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Abstract

This thesis consists of five appended papers, primarily addressing
topics in pedestrian crowd modeling and the formation of conventions.

The first paper generalizes a pedestrian crowd model for compet-
ing subcrowds to include nonlocal interactions and an arbitrary (but
finite) number of subcrowds. Each pedestrian is granted a ’personal
space’ and is effected by the presence of other pedestrians within it.
The interaction strength may depend on subcrowd affinity. The paper
investigates the mean-field type game between subcrowds and derives
conditions for the reduction of the game to an optimization problem.

The second paper suggest a model for pedestrians with a pre-
determined target they have to reach. The fixed and non-negotiable
final target leads us to formulate a model with backward stochastic
differential equations of mean-field type. Equilibrium in the game be-
tween the tagged pedestrians and a surrounding crowd is characterized
with the stochastic maximum principle. The model is illustrated by a
number of numerical examples.

The third paper introduces sticky reflected stochastic differential
equations with boundary diffusion as a means to include walls and
obstacles in the mean-field approach to pedestrian crowd modeling.
The proposed dynamics allow the pedestrians to move and interact
while spending time on the boundary. The model only admits a weak
solution, leading to the formulation of a weak optimal control problem.

The fourth paper treats two-player finite-horizon mean-field type
games between players whose state trajectories are given by backward
stochastic differential equations of mean-field type. The paper vali-
dates the stochastic maximum principle for such games. Numerical
experiments illustrate equilibrium behavior and the price of anarchy.

The fifth paper treats the formation of conventions in a large pop-
ulation of agents that repeatedly play a finite two-player game. The
players access a history of previously used action profiles and form be-
liefs on how the opposing player will act. A dynamical model where
more recent interactions are considered to be more important in the
belief-forming process is proposed. Convergence of the history to a
collection of minimal CURB blocks and, for a certain class of games,
to Nash equilibria is proven.

Keywords: pedestrian crowds, stochastic differential equations,
mean field, stochastic control, games, backward dynamics, sticky bound-
ary, stochastic maximum principle, social conventions
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Sammanfattning

Den här avhandlingen består av fem artiklar som behandlar några
utvalda problem inom matematisk modellering av folkmassors rörelse
och uppkomsten av konventioner.

Den första artikeln generaliserar en modell för växelverkan mel-
lan grupper av fotgängare. Varje fotgängare (agent) ges ett ’person-
ligt utrymme’ och påverkas av andra agenter som befinner sig i dess
utrymme. I artikeln analyseras situationen som ett matematiskt spel
av medelfältstyp och villkor för när spelet kan reduceras till ett opti-
meringsproblem härleds.

I den andra artikeln modelleras fotgängare med ett mål som de är
tvungna att nå efter en bestämd (ändlig) tid. Detta ej förhandlings-
bara mål leder oss till stokastiska differentialekvationer med ändvillkor.
Med den stokastiska maximumprincipen härleds nödvändiga villkor för
jämvikt i ett matematisk spel där fotgängarna och en omgivande folk-
massa växelverkar i tävlan om den bästa färdvägen. Modellen illustr-
eras med flera numeriska exempel.

I den tredje artikeln introducerar vi reflekterande stokastiska differ-
entialekvationer med limaktiga randvillkor och randdiffusion som ett
verktyg för att modellera hur fotgängaren påverkas av väggar och andra
fasta hinder. Den föreslagna dynamiska modellen tillåter fotgängarna
att spendera tid vid väggar och då också växelverka med omgivningen.
Ekvationerna kan endast lösas i en svag mening och därför formuleras
modellen som ett styrproblem för fotgängarnas statistiska fördelning.

Artikel fyra behandlar ett spel av medelfältstyp med två spelare
vars tillstånd beskrivs av ett system av stokastiska differentialekva-
tioner med ändvillkor. Med den stokastiska maximumprincipen härleds
nödvändiga villkor för spelets jämvikt och en numerisk simulering visar
på skillnaden i utfall mellan konkurrens och samarbete, alltså mellan
spelet och en relaterad styrmodell.

Den femte artikeln handlar om uppkomsten av konventioner i en
stor population av agenter som upprepade gånger spelar ett ändligt
spel med två roller. När agenterna ska välja strategi har de en historik
av tidigare spelade strategier till hjälp. Artikeln introducerar en spel-
dynamik där den senare historiken antas vara viktigare än den tidigare.
Vi bevisar konvergens av historiken till strategier i minimala CURB
block och, för en specifik klass av spel, till Nashjämvikter.

Nyckelord: folkmassor, stokastiska differentialekvationer, medelfält,
stokastisk styrning, limaktiga randvillkor, stokastiska maximumprincipen,
dynamik med ändvillkor, spel, konventioner
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1

Introductory overview

This thesis treats subjects related to the mathematical modeling of crowds
and the individual’s strategic choice of action. Specifically, it deals with
a number of questions and issues linked with the mean-field approach to
pedestrian crowd modeling, and also some questions regarding the stability
of conventions in normal form games.

In the mean-field approach to pedestrian crowd modeling, a crowd of
N pedestrians is approximated with its statistical limit as N → ∞. The
phrase mean field indicates the affinity with the mean-field theory in physics,
which treats systems of large numbers of particles, each with a negligible
impact upon the system as a whole. The approximation drastically reduces
the dimension of the system of equations that characterizes equilibrium, or
optimal, behavior. But there is a trade-off, the mean-field equations are
generically nonlinear.

Depending on whether the participants in the crowd are competing or
cooperating, the approach leads to two different, but closely related, math-
ematical problems. On the one hand, mean-field games approximate a very
large crowd of competing, interacting pedestrians, each with negligible im-
pact on the behavior of the crowd as a whole. On the other hand, a mean-field
type control problem approximates a cooperating crowd whose participants
follow the decision of a central planner. The central planner can signifi-
cantly impact the crowd as a whole. Mean-field type game theory is the
multi-central planner generalization of the single central planner mean-field
type control.

Ultimately, a model for the pedestrian crowd must be consistent with em-
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Introduction

pirically established facts about pedestrian motion and be able to replicate
experimental results. While the interaction between pedestrians is a signifi-
cant component in pedestrian crowd dynamics, it cannot by itself explain all
observed features of a crowd. To name a few other components, individual
pedestrians have physical speed constraints, preferred speeds and directions,
they conserve energy but are also impatient. In a crowd, the pedestrian
motion is constrained by walls, obstacles, and by the crowd density itself.

In the mean-field approach to crowd modeling it is common practice to
work under the assumption that aggregate interactions will lead to a crowd
which is in Nash equilibrium. The question of whether rational agents will
settle in some form of equilibrium does not have a straight-forward answer.
Some insight can be gained by analyzing repeated play of games where, turn
by turn, each agent updates its belief about the other participants in the
game and acts accordingly. After a sufficiently large number of turns, the
agents may settle to use only strategies from some subset (possibly a Nash
equilibrium) of their admissible strategies and a convention is formed.

The thesis consists of two parts. This part continuous with a chapter
that contains background material followed by a chapter that summarizes
the appended research papers and also clarifies my contribution to each of
them. The scientific contribution is found in the second part, which contains
five appended papers. The first three papers deal with questions in the
mean-field approach to pedestrian crowd modeling, the fourth paper with
the computation of equilibria in the mean-field approach, and the fifth paper
treats the formation of conventions in finite normal-form games.

4



2

Background

This section aims to give both an overview of the modeling approaches to
the motion of pedestrian crowds, as well as presenting a background to the
mathematical models used in the five papers that comprise the second part
of this thesis.

First, normal-form games are defined and the concept of Nash equilib-
rium is introduced. Then, the theory of stochastic optimal control is briefly
summarized. The focus is the type of control problems that are used to model
pedestrian crowds in the appended research papers. The idea of a game and
a control problem is then, loosely speaking, combined and stochastic dif-
ferential games are introduced. From there, the step is small to mean-field
type control problems and mean-field type games. Finally, this section treats
experiments on and contemporary models for pedestrian crowd motion. A
special focus is given to the mean-field approach.

The mathematical problems and models presented below have plenty of
variations, each one being a field of research on its own. The particular
variants introduced here are those of highest relevance for the appended
research papers.

2.1 Games and optimal control

Static games

The theory of games dates back to the first half of the 20th century, when
it was developed to be a mean for the modeling of conflicting interests and
interaction. Economic processes, multinational environmental efforts, and
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ecological equilibria are examples thereof. Pedestrians competing for the
shortest path in a crowded environment, e.g. a train station at rush hours,
can also be modeled as a game. The early research culminated with the clas-
sical book of von Neumann and Morgenstern [71], which set the foundations
of game theory.

The basic entity of a game theoretic model is the player, representing an
individual, a group, or any other decision making unit. The basic assump-
tions that underlie the theory are that players pursue well-defined objectives
(they are rational) and take into account their knowledge or expectations of
other players’ behavior (they reason strategically). Normal-form games,
or strategic games, are games in which each player makes a decision once
and for all, and the players make their decisions simultaneously and inde-
pendently. Most of the content presented in the rest of this section can be
found in [74].

Definition 1. A normal-form game consists of

• a finite set N := {1, . . . , N} (the set of players);

• for each player i ∈ N a nonempty set Ui (the set of actions (strate-
gies, controls) available to player i);

• for each player i ∈ N a preference relation on U := ×j∈NUj (the
preference relation of player i).

If Ui is a finite set for all i ∈ N we call the game finite. Generally,
a preference relation is a complete reflexive transitive binary relation. If
the game is finite, the preference structure of player i can then be replaced
by a function Ji : U → R such that player i prefers u ∈ U over v ∈ U if
Ji(u) < Ji(v) and is indifferent if Ji(u) = Ji(v). This is the only kind of
preference relation considered in this thesis. The convention will always be
that the players’ preference is towards lower values of Ji, i.e. they minimize
a cost. A normal-form game with preference structure of the type described
here is denoted by 〈N , (Ui)i∈N , (Ji)i∈N 〉.

There are plenty of concepts that can serve as solutions to normal-form
games. Which one that makes most sense is highly game and context de-
pendent. The most commonly used notion is that of a Nash equilibrium,
formalized by Nash [69].
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Definition 2. An N -tuple û := (û1, . . . ûN ) ∈ U is called a Nash equilib-
rium of the strategic game 〈N , (Ui)i∈N , (Ji)i∈N 〉 if

Ji(û) ≤ Ji(û1, . . . , ûi−1, u, ûi+1, . . . , ûN ), ∀u ∈ Ui, ∀i ∈ N .

In words, Definition 2 says that no player can gain from a unilateral deviation
to a different strategy. The equilibrium of Definition 2 is often referred to
as a pure Nash equilibrium for the game 〈N , (Ui)i∈N , (Ji)i∈N 〉. In a generic
game, a pure Nash equilibrium does not necessarily exist, and when it does,
it might not be unique. Two pure Nash equilibria can yield different values
of Ji, a famous example of this situation is the so-called coordination game.
Also, playing Nash equilibrium strategies can lead to the worst societal out-
come (see the route choice example in [29, Ch. 8]). Solution concepts other
than the Nash equilibrium include proper equilibrium, perfect equilibrium,
and many more. See for example [74] for an exposition.

Example 3 (Prisoner’s dilemma). To the classical ’Prisoner’s dilemma’
game there is a unique Nash equilibrium. The preference structure for a
generic Prisoner’s dilemma is given by payoff matrix below with b > a > d >
c.

Player Y

Silent Betray

Player X
Silent (a, a) (c, b)

Betray (b, c) (d, d)

Table 1: Payoff matrix for Prisoner’s dilemma.

The unique pure Nash equilibrium is (Betray,Betray), which individually
yields a lower payoff than (Silent, Silent).

Example 4 (Matching pennies). The ’Matching pennies’ game, with payoff
matrix defined below, does not have a pure Nash equilibrium in the sense of
Definition 2.

The fact that not all normal-form games have a Nash equilibrium strat-
egy (cf. Example 4) can be resolved by allowing the players to use mixed
strategies. A mixed strategy is a probability distribution over the action
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Disagreeing player

Heads Tails

Agreeing player
Heads (1,−1) (−1, 1)

Tails (−1, 1) (1, 1)

Table 2: Payoff matrix for Matching pennies

set. Denote by P(Ui) the set of probability measures over Ui. Since the
players’ choices of action are independent, the cost function extends to take
a mixed strategy profile µ = ⊗i∈N (µi) where µi ∈ P(Ui),

Ji(µ) :=

∫
U
Ji(u)dµ(u).

Definition 5. The mixed-strategy extension of 〈N , (Ui), (Ji)〉 is the game
〈N , (P(Ui)), (Ji)〉. A mixed Nash equilibrium in a normal-form game
is a Nash equilibrium in its mixed-strategy extension.

Nash famously proved that every finite normal-form game has a mixed
Nash equilibrium [69, 70]. In his Ph.D. thesis [68], John Nash provided two
informal interpretations of what his equilibrium concept represents. In the
rationalistic interpretation the players have never interacted before and will
never interact again, but share common knowledge of everyones rationality
and of the game. How will they play? One possibility is a Nash equilibrium
strategy, which is compatible with this setup. However, it is now known that
there are more strategies than the Nash equilibria which are compatible with
common knowledge of rationality and of the game, see [75] for an example.
Hence, common knowledge of rationality and the game does not imply the
Nash equilibrium play in general. Nonetheless, it does in certain subclasses
of normal-form games, such as dominance solvable games (of which the Pris-
oner’s dilemma is an example). Nash called his second interpretation the
mass action interpretation. For each role in the game, he considered a pop-
ulation of individuals without complete knowledge, from which a player is
selected at random to play the game. The game is played over and over
again, and over time, if the players “accumulate empirical information on
the relative advantages of the various pure strategies at their disposal, [. . . ]
this ’mass action’ interpretation led to the conclusion that the mixed strate-
gies representing the average behavior in each of the populations form an
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equilibrium point” [68]. Stability and convergence in a certain model of such
repeated plays is the topic of the fifth paper of this thesis.

Example 6 (Matching pennies). The unique mixed Nash equilibrium of the
Matching pennies game of Example 4 is when both players uniformly ran-
domize their two strategies.

A mixed-strategy extension of a finite game is not finite since the set
of mixed actions is a subset of the Euclidean space. Games can also be
infinite in the sense that the number of players is infinite; this is discussed
in Section 2.2, below. As a final remark, note that the Nash equilibrium in
a game with only one player is the optimizer of that player’s preference, i.e.
the game reduces to an optimization problem.

Stochastic optimal control theory

Optimal control theory essentially studies a single player’s state trajectory,
which evolves over time according to a dynamic constraints involving a con-
trol process. The control process is the player’s action. This is no longer a
game, but a (functional) minimization problem. The theory tries to answer
two questions:

• Existence of a minimum/maximum of a performance functional;

• Explicit computation of such a minimum/maximum.

Results on the existence of deterministic optimal controls can be traced back
to the work [78] and makes use of the nowadays so-called Roxin condition
and a measurable selection theorem. This path was perused for stochastic
optimal control in [56, 33], to name a few. Other paths to existence results
include approaches based on dynamic programming together with a verifi-
cation theorem [23], the Girsanov transformation [28], and the martingale
representation theorem [54]. Relaxed controls, a concept similar to that of
mixed equilibria in games, was introduced in [87] as a compactification de-
vice and has been applied to prove existence of optimal stochastic controls
[55, 30].

The computation of an optimal control will be addressed later in this
section. First, the strong and the weak formulation of the stochastic optimal
control problem will be introduced, as well as stochastic differential games.
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The strong formulation of stochastic optimal control

Fix a time horizon T ∈ (0,∞) and a separable metric space U . Let (Ω,F ,F,P)
be a filtered probability space satisfying the usual conditions (cf. [86, Def.
2.6]), carrying an m-dimensional standard Brownian motion W and an Rn-
valued random variable x, independent of W . Let

U := {u : [0, T ]× Ω→ U | u is F-adapted} .

The dynamics of a controlled stochastic system is given by the following
stochastic differential equation (SDE){

dXt = b(t,Xt, ut)dt+ σ(t,Xt, ut)dWt

X0 = x,
(1)

where b : [0, T ]× Rn × U → Rn, σ : [0, T ]× Rn × U → Rn×m. In the above,
X is called the state trajectory, x is called the initial position, and
u ∈ U is called the control or the action. Consider now a player with state
trajectory (1) that takes an action from U which minimizes the following
cost functional

J(u) := E
[∫ T

0
f(t,Xt, ut)dt+ g(XT )

]
, (2)

where f : [0, T ]× Rn × U → R, g : Rn → R and the expected value is taken
under P. The first and second terms on the right hand side of (2) are referred
to as the running cost and the terminal cost, respectively.

Depending on the choice of coefficient functions it might be so that (1)
does not admit a solution (in the strong sense) for all u ∈ U . Here, one
faces a trade-off between assuming regularity on b, σ and restricting the set
of controls U . To keep the presentation general we let Uad be a subset of U ,
not necessarily strict, which we call the set of admissible controls, i.e. for
which

(i) b and σ are such that there exists a unique strong solution of the
stochastic system (1) (cf. [86, Def. 6.15]);

(ii) f(·, X·, u·) ∈ L1
F([0, T ];R) and g(XT ) ∈ L1

FT (Ω;R),
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The second assumption makes the cost J well-defined. We may now formu-
late the strong stochastic control problem as follows:

(OC)

{
Minimize the cost J over the set of admissible controls Uad,

subject to (1) in the strong sense.

Example 7 (Linear quadratic). Let ξ be F0-measurable, real-valued, square-
integrable, and independent of W (the Brownian motion introduced above).
The linear quadratic version of (OC) has the following structure. The single
agent has a state trajectory that satisfies the linear SDE

dXt = (AXt +But) dt+ σdWt, X0 = ξ,

and the agent minimizes the quadratic cost

J(u) = E
[∫ T

0

(
QX2

t +Ru2
t + 2NXtut

)
dt+ FX2

T

]
.

Above, Q,R,N,A,B, σ are deterministic constants. If U is unbounded, the
natural restriction of U to admissible controls is

Uad =

{
u ∈ U | E

[ ∫ T

0
|ut|2dt

]
<∞

}
,

since then E[|Xt|2] <∞ for all t ∈ [0, T ] and the cost is well defined. If U is
bounded, no restriction is needed. If the cost was not quadratic, but of power
α < 2, the admissibility could be relaxed accordingly. For a power α > 2, the
problem would be ill-defined unless the assumptions on ξ were strengthened
to ξ ∈ LαF0

(Ω;R) (cf. [86, Thm. 6.16]).

Remark 8. To mention a few of the variations of (OC), there is the ran-
dom duration control problem, the risk-sensitive problem, partially observable
systems, and singular and impulse controls. Further variations include time
varying control- and state-constraints and an infinite-time horizon. Varia-
tions will in general change the set of admissible controls.

The weak formulation of stochastic optimal control

The weak formulation of the stochastic optimal control problem consist of
varying the probability space and consider it as part of the player’s action.
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This is reasonable since the player’s preference relation (J) depends solely
on the distribution of the state trajectory. It might also be so that the
prescribed stochastic system fails to have a strong solution, but allows for a
weak solution. The probability space then naturally varies with the control,
since each control will give rise to a weak solution of the stochastic system.

The approach can be summarized as follows. Take Ω := C([0, T ];Rn)
to be the space of continuous function from [0, T ] to Rn. Given t ∈ [0, T ]
and ω ∈ Ω let X be the coordinate process Xt(ω) := ω(t). Denote by F
the filtration generated by X completed with the P-null sets of Ω. The set
of admissible control Uad is such that that for each u ∈ Uad, there exists a
unique weak solution to (1). Note that the set of admissible controls in the
weak formulation is not necessarily equal to its counterpart in the strong
formulation. Solving (1) weakly for a fixed u ∈ Uad means finding a prob-
ability measure Pu under which the coordinate process is a solution to the
stochastic system (1). Hence, this approach induces a family of probability
measures (Pu, u ∈ U) which is controlled by the player.

When the control does not appear in the diffusion coefficient of (1), the
family can be constructed with the Girsanov transformation. In the case of
controlled diffusion the control problem is in fact a problem about robustness.
All probability measures in the induced family are singular with P and with
each other (for different controls). The so-called second order backward SDE
framework has been developed in [79] for the case of controlled diffusion.

Denoting by Eu expectation with respect to Pu, the cost in the weak
formulation is

JW (u) = Eu
[∫ T

0
f(t,Xt, ut)dt+ g(XT )

]
,

and the weak stochastic optimal control problem can be stated as
follows:

(WOC)

{
Minimize the cost JW over the set of admissible controls Uad,

subject to (1) in the weak sense.

Example 9 (Linear quadratic). To solve the linear quadratic problem of the
previous section in the weak sense, consider the probability space (Ω,F ,P)
described in this section, P being the probability measure on C([0, T ];R) under
which the coordinate process solves

dXt = AXtdt+ σdWt,

12
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where W is a P-Wiener process and σ > 0. Consider the likelihood process

dLut = LutButσ
−1dWt, Lu0 = 1.

The Girsanov transformation dPu = LuTdP defines a new probability measure
Pu if Lu is a true martingale, more on this below. Under Pu, the coordinate
process satisfies

dXt = (AXt +But)dt+ σdW u
t ,

whereW u is a Wiener process under Pu. An agent with the coordinate process
as state trajectory minimizes the cost

JW (u) = Eu
[∫ T

0

(
QX2

t +Ru2
t + 2NXtut

)
dt+ FX2

T

]
where Eu denotes expected value under Pu. A key observation is that JW can
be rewritten as an expected value under E; since Lu is a martingale,

JW (u) = E
[∫ T

0
Lut
(
QX2

t +Ru2
t + 2NXtut

)
dt+ FLuTX

2
T

]
.

In this case, (WOC) can be stated as an optimal control problem in the strong
sense on the original probability space,

min
u∈Uad

E
[∫ T

0 Lut
(
QX2

t +Ru2
t + 2NXtut

)
dt+ FLuTX

2
T

]
,

s.t. dLut = LutButσ
−1dWt, L0 = 1,

dXt = AXtdt+ σdWt, X0 = ξ.

The controlled process is not the state trajectory, but the likelihood process,
and the state trajectory does not in any way effect the set of admissible con-
trols. Instead, the set Uad should be such that Lu is a true martingale (for
example satisfy Novikov’s condition) and the cost above is well-defined.

Stochastic differential games

As put by Lewin in [63], “the theory of differential games is a blending of the
notions of control theory with the decision structures and solution concepts of
classical game theory. A differential game model cannot hence be considered
as a double control problem. In general we can reduce a differential game

13
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model to a control model if we assume that only one player is active and the
other is not.”

The last assertion is based on the fact that a the game reduces to a
minimization problem whenever there is only one active player. The optimal
control problem can therefore be thought of as a single-player game.

Motivated by pursuit and evasion problems, Isaacs laid the foundations
for differential game theory in the 1950s [47]. The original work and further
early research were incorporated into the book [48]. Around the same time,
Pontryagin et al. treated optimal control problems in a new way [77] and
their seminal work was promptly extended to two-player games in [53].

We will define a stochastic differential game (SDG) on a probability space
(Ω,F ,F,P), defined as in Section 2.1 except that now it carries N ∈ N
standard Wiener processes (Bi)i and initial conditions (xi)i, all independent.
To work in accordance with Definition 1, which defines a normal-form game,
we need to precise a set of players, their sets of actions, and their performance
relations in order to construct a game. Consider N players, let Ui be a
separable metric space for i ∈ N = {1, . . . , N}, and let the set of actions for
player i be

Ui := {u : [0, T ]× Ω→ Ui | u is F-adapted}.

We might have to restrict Ui to a set of admissible actions Ui,ad as in the
previous two sections. Given an action vector u = (u1, . . . , uN ) ∈ ×Ni=1Ui,ad,
player i’s state is given by the stochastic system{

dXi
t = bi(t,Xt,ut)dt+ σi(t,Xt,ut)dB

i
t,

Xi
0 = xi,

where X := (X1, . . . , XN ). Let player i’s cost function (performance rela-
tion) be

Ji(u) = E
[∫ T

0
fi(t,Xt,ut)dt+ gi(XT )

]
.

This setup is a N-player nonzero-sum non-cooperative SDG. The same
questions that are asked in optimal control theory can be asked here:

• Existence of a Nash equilibrium;

• Explicit computation of Nash equilibria.

14



Introduction

The problem presented above is one of many popular variants of a differ-
ential game. The theory is rich with adaptations (information structures,
risk-sensitivity, etc., cf. Remark 8), each designed to suit one of the many
applications.

Computation of optimal stochastic controls and differential
game equilibria

Stochastic optimal control problems and differential games are approached
in very similar ways when it comes to actually computing optimal controls
and Nash equilibria, respectively. There are two predominant tools for char-
acterizing optimal controls in general optimal control theory. Variational
methods, sometimes called the probabilistic approach, lead to the so-called
Pontryagin maximum principle. The dynamic programming method,
based on Bellman’s principle and sometimes called the partial differential
equation (PDE) based approach, leads to the Hamilton-Jacobi-Bellman
(HJB) equation. Other paths include the direct method (cf. [27] and refer-
ences therein) and Wiener chaos expansion [46, 82].

The stochastic maximum principle

Pontryagin’s maximum principle yields necessary conditions for an optimal
control. It is in a way the infinite-dimensional analog of the zero-derivative
condition or the KKT condition in finite dimensional function optimization.
For the stochastic optimal control problem (OC) it states that if û is the
optimal control and X̂ is the corresponding state trajectory, then there are
pairs of processes (p, q) and (P,Q) satisfying the adjoint equations, a sys-
tem of linear backward SDEs (BSDE), such that û maximizes the (possibly
extended) Hamiltonian H pointwisely: for almost every t ∈ [0, T ] and
P-a.s.,

H(t, X̂t, ût, pt, qt, Pt, Qt) = max
u∈U

H(t, X̂t, u, pt, qt, Pt, Qt). (3)

The infinite-dimensional minimization of J has been replaced by the point-
wise minimization of H. The trade-off lies in solving the adjoint equations,
that are coupled with the optimal state trajectory. This coupled system has
mixed temporal boundary conditions and is a so-called forward-backward
SDE (FBSDE). FBSDE theory is an active area of research in itself [3, 42, 85].
The change to pointwise optimization allows for explicit solutions for certain

15
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classes of optimal control problems and games such as the linear-quadratic
case.

An optimality condition is derived by perturbing an optimal control on
a small measurable subset of [0, T ] with a spike variation. The variational
inequality (3) is then obtained after performing a first order Taylor expansion
(or second order if the diffusion is controlled, see [76]) with respect to the
perturbation and by sending the perturbation to zero. The adjoint equations
appear naturally when integrating the perturbed terminal cost by parts,
yielding the so-called duality relation.

Example 10 (Linear quadratic). Consider the example of a strong linear-
quadratic optimal control problem. Since only the drift is controlled, we do
not have to consider the second order adjoint process (P,Q). The first order
adjoint process (p, q) should be constrained at the time horizon T . To clearly
see what we should set it to, we have to first introduce the spike variation and
look at the variation of the cost. Assume that û is an optimal control and
consider a spike-variation of û, i.e. a switch of û to an arbitrary u ∈ Uad on
a set Eε ⊂ [0, T ] of size

∫
Eε
dt = ε,

uεt =

{
ût, t /∈ Eε,
ut, t ∈ Eε.

Denote by Xε and X̂ the state trajectory when using uε and û, respectively,
and let ξε := Xε − X̂. Then

dξεt = (Aξεt +But1Eε(t)) dt, ξε0 = 0.

For any sufficiently nice function f , estimates of the following form can be
derived

E[f(Xε
t )− f(X̂t)] = E[f ′(X̂t)ξ

ε
t ] + o(ε).

At this point, the optimal cost and the spike-perturbed cost can be compared,

J(uε)− J(û)

= E
[∫ T

0

(
Q((Xε

t )
2 − X̂2

t ) +Ru2
t 1Eε(t) + 2Nξεtut1Eε(t)

)
dt

]
+ E

[
F
(

(Xε
T )2 − X̂2

T

)]
= E

[∫ T

0

(
2QX̂tξ

ε
t +

(
Ru2

t + 2Nξεtut
)

1Eε(t)
)
dt+ 2FX̂T ξ

ε
T

]
+ o(ε).
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Setting pT = −∂xg(X̂T ) = −2FX̂T , the terminal cost can be rewritten

E
[
F
(

(Xε
T )2 − X̂2

T

)]
= −E [pT ξ

ε
T ] + o(ε)

= −E
[∫ T

0
ptdξ

ε
t +

∫ T

0
ξεtdpt +

∫ T

0
d〈p, ξε〉t

]
+ o(ε)

= −E
[∫ T

0
(pt(Aξ

ε +But1Eε(t)) + ξεtµp(t)) dt+

∫ T

0
ξεtσp(t)dWt

]
+ o(ε)

= −E
[∫ T

0
((Apt + µP (t))ξε +Bptut1Eε(t)) dt

]
+ o(ε),

where µp and σp are the drift and diffusion cofficients of p, respectively. This
is the so-called duality relation. Gathering terms, we see that

J(uε)− J(û)

= E
[∫ T

0

(
2QX̂ −Apt − µp(t)

)
ξεtdt

]
+ E

[∫ T

0

(
Ru2

t + 2Nξεtut −Bptut
)

1Eε(t)dt

]
+ o(ε)

= −E
[∫ T

0

(
H(t, uεt, X̂t, pt, qt)−H(t, ût, X̂t, pt, qt)1Eε(t)

)
dt

]
+ o(ε),

where the Hamiltonian H is defined as

H(t, u, x, p, q) := −Qx2 −Ru2 − 2Nxu+ p(Ax+Bu),

and µp and σp have been chosen so that (p, q) is the solution to the BSDE{
dpt = −∂xH(t, ût, X̂t, pt, qt)dt+ qtdWt = (Apt − 2QX̂t)dt+ qtdWt,

pT = −∂xg(X̂T ) = −2X̂T .

The BSDE above is the first order adjoint equation. The maximum principle
has thus given us necessary conditions for optimality: if û is optimal then it
maximizes the quadratic Hamiltonian pointwise,

ût = arg max
u∈U

H(t, u, X̂t, pt, qt), P-a.s. for a.e. t, (4)

where X̂ and (p, q) solves the linear FBSDE systemdX̂t =
(
AX̂t +Bût

)
dt+ σdWt, X̂0 = ξ,

dpt =
(
Apt − 2QX̂t

)
dt+ qtdWt, pT = −2X̂T .

(5)
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In the linear-quadratic case with Q > 0 the first order optimality condition
(4) is satisfied by ût = B

Rpt− 2NR X̂t, P-a.s. for almost every t. Inserting this
ût into (5) we see that û is characterized by the following fully coupled linear
FBSDEdX̂t =

(
(A− 2NBR )X̂t + B2

R pt

)
dt+ σdWt, X̂0 = ξ,

dpt =
(
Apt − 2QX̂t

)
dt+ qtdWt, pT = −2X̂T .

The Hamilton-Jacobi-Bellman equation

In the context of the stochastic optimal control problem (OC), the value
function is

V (t, x′) = inf
u∈Uad

E
[∫ T

t
f(t,Xt, ut)ds+ g(XT ) | Xt = x′

]
,

where X is the solution to (1). Dynamic programming tells us that the value
function (formally) satisfies the HJB equation{

∂tV (t, x) + inf
u∈U

L
(
t, x, ∂xV (t, x), ∂2

xxV (t, x), u
)

= 0,

V (T, x) = g(x),
(6)

where

L(t, x, y, z, u) := f(t, x, u) + yb(t, x, a) +
1

2
Tr [zσ(t, x, u)σ∗(t, x, u)] .

Note that as in the probabilistic approach, the PDE approach converts
infinite-dimensional minimization of J to pointwise minimization of L. The
trade-off is that we have introduced the HJB equation, which is coupled
with the state trajectory and constrained at the terminal time T . An opti-
mal control can be identified in terms of the derivatives of V by solving the
pointwise minimization in (6). The approach extends to two-person zero-sum
games and other nonzero-sum games, where the HJB equation is replaced
by the Hamilton-Jacobi-Isaacs (HJI) equation and system of coupled PDEs
(usually also referred to as the HJB system), respectively. Since the dy-
namic programming approach relies on the Bellman principle it only applies
to time-consistent problems. Time-inconsistent problems, such as the min-
imization of J(u) = E[φ(Xu

T , E[Xu
T ])] for a nonlinear φ, cannot be treated

18



Introduction

via the dynamic programming as it is based on the tower property of the
conditional expectation. Time consistency is not an issue for Pontryagin’s
maximum principle. The HJB equation and its generalization are highly
nonlinear and seldom allow for neither smooth nor unique solutions. The
rigorous derivation of the PDEs has engaged many researchers, some of that
work includes [32, 80, 21, 49].

Example 11 (Linear quadratic). For the linear-quadratic problem,

L(t, x, y, z, u) = Qx2 +Ru2 + 2Nxu+ y(Ax+Bu) +
σ2

2
z.

The minimizer of L is (for positive R) û = −2NRx−
B
Ry and

L(t, x, y, z, û) = Qx2 +Axy +
σ2

2
z.

The density m of the state trajectory when using the control u satisfies the
Fokker-Planck equation ∂tm+ ∂x ((Ax+Bu)m)− σ2

2
∂xxm = 0, (t, x) ∈ (0, T ]× R,

m(0, x) = m0(x), x ∈ R,

where m0 denotes the density of X0. The dynamic programming approach
hence gives the following necessary condition on an optimal control: if û is
optimal then ût = −2NRx −

B
R∂xV where V is part of the solution to the

coupled PDE system
∂tV +Qx2 +Ax∂xV + σ2

2 ∂xxV = 0, (t, x) ∈ [0, T ]× R,
V (T, x) = g(x), x ∈ R,
∂tm+ ∂x

((
(A− 2NBR )x− B2

R ∂xV
)
m
)
− σ2

2 ∂xxm = 0, (t, x) ∈ [0, T ]× R,

m(0, x) = m0(x), x ∈ R.

Remark 12. Comparing Example 10 and 11, the negative gradient of the
value function −∂xV seems to resemble the adjoint variable p from the max-
imum principle approach. This is indeed often the case; many examples are
given in the preface of [86]. We also note that the PDE system above is not
fully coupled, in contrast with the FBSDE in Example 10, but that will no
longer be the case in the mean-field regime, where the corresponding PDE
system is fully coupled.
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2.2 The mean-field approximation

Are games with many players harder or easier to understand than those
with few players? On the one hand, the answer is that they are harder; a
strategic game, as we have defined it, grows exponentially with the number
of players N . But for many natural classes of games, we might hope that
the answer is that they are easier. Perhaps the influence of each player on
the outcome is small, which in turn makes the equilibrium behavior easy to
characterize. For example, in a large human crowd the action of a single
pedestrian has only negligible effect on the evolution of the crowd density.
The individual agent is strategically insignificant. The ideal situation of
strategic insignificance can only be obtained in models featuring a continuum
of agents, as argued by Aumann in [4]. We will in the following sections
see the continuum of agents appearing as the probability distribution of
the states and controls of the agents. The distributions will replace the
explicit agent-to-agent interaction in games with finitely many agents. This
replacement is a mean-field approximation.

Large population limits of particle systems

Consider the particle system{
dXi

t = 1
N

∑N
j=1 b(X

i
t , X

j
t )dt+ dBi

t,

Xi
0 = xi, i = 1, . . . , N,

(7)

where (Bi) are independent Wiener processes, xi are independent and iden-
tically distributed random variables also independent of the (Bi). The map-
ping b is assumed to be Lipschitz continuous. Under these assumptions the
system (7) has a unique strong solution and furthermore, the Xi are ex-
changeable. The law of large numbers implies that for large N ,

1

N

N∑
j=1

b(Xi
t , X

j
t ) ≈

∫
Rd
b
(
Xi
t , x
)
dµt(x),

where µt = P◦
(
Xi
t

)−1 is the distribution ofXt. In fact, the mean-square limit
of the interacting particle system (7) is the McKean-Vlasov equation{

dXi
t =

∫
Rd b(X

i
t , y)dµt(y)dt+ dBi

t,

Xi
0 = xi.
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The McKean-Vlasov equation also goes under the name nonlinear diffu-
sion and SDE of mean-field type. The study of the McKean-Vlasov
equation, interacting diffusions, and Markov processes originates from Kac’s
approach to kinetic theory [52] and McKean’s work on nonlinear parabolic
equations [67]. The monograph by Sznitmann [81] is a classical references
for the mean-field limits of particle systems, although in that model the co-
efficients are linear in the law of the process. The nonlinear case is treated in
[50], which also provides a general result on the existence of strong solutions
to nonlinear SDEs. Further important contributions include Oelschläger’s
weak law of large numbers [72, 73] and the derivation of BSDEs of mean-
field type [10] (which are vital for stochastic dynamic programming and the
SMP).

Example 13 (Linear quadratic). Consider N interacting agents, each with
control ui and state trajectory Xi. The Xi satisfy the SDE system{

dXi
t =

(
AXi

t +Buit + C
N

∑N
j=1(Xi

t −X
j
t )
)
dt+ σdW i

t ,

Xi
0 = xi, i = 1, . . . , N.

(8)

The coupling in the interacting system (8) is the average state 1
N

∑
j X

j
t . If

the xi are exchangeable and identically distributed, the W i are independent
Wiener processes, and the xi and the W i are independent, the mean-field
approximation of (8) is{

dX̄i
t =

(
AX̄i

t +Buit + C(X̄i
t − E[X̄i

t ])
)
dt+ σdW i

t ,

X̄i
0 = xi.

Estimates of the following type can be derived

E

[
sup
t∈[0,T ]

|Xi
t − X̄i

t |2
]
≤ C

N

where C does not depend on N , see for example [50].

Large population limits of symmetric games

Consider a game in normal form with a large number of players who all
choose their strategies from the same compact metric space U .
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Definition 14. A normal-form game is called symmetric if Ui = U for all
i ∈ N and Ji(u1, . . . , uN ) = Jθ(i)(uθ(i), . . . , uθ(N)) for any permutation θ on
N .

Nash proved in [70] that if a finite normal-form game is symmetric, then
there exists a symmetric mixed Nash equilibrium (µ̂, . . . , µ̂), where µ̂ ∈ P(U).
In a symmetric game the payoff function of player i is by definition a sym-
metric function. Hence, under suitable bounds and continuity assumptions,
we can approximate Ji for large N ,

Ji(u1, . . . , uN ) ≈ J

ui, 1

N − 1

∑
j 6=i

δuj

 , (9)

where J : U×P(U)→ R. See [16] for a detailed exposition of the arguments
and the existence of the function J . The following result from [64] gives
sufficient regularity assumption for the mean-field approximation to work in
symmetric games:

Assume that J is Lipschitz continuous (with respect to the Wasserstein
distance in the measure-valued argument) and that (µ̂(N), . . . , µ̂(N)) is a
symmetric Nash equilibrium for 〈N , (P(U))Ni=1 , (Ji)

N
i=1〉 with N ∈ N, where

Ji(µ) :=

∫
UN

J

ui, 1

N − 1

∑
j 6=i

δuj

µ(du).

Then, up to a subsequence, µ̂(N) converges to a measure µ̂ as N → ∞ and
µ̂ satisfies the mean-field equation∫

U
J(v, µ̄)µ̄(dv) = inf

µ∈P(U)

∫
U
J(v, µ̄)µ(dv).

Compare this with the cooperative scenario, where all agents jointly min-
imize the average agent cost. Under similar assumptions as stated above,
the mean-field equation for µ̄ then becomes∫

U
J(v, µ̄)µ̄(dv) = inf

µ∈P(U)

∫
U
J(v, µ)µ(dv).

Formally, this can be justified by taking the average player cost, then apply-
ing the approximation (9) and finally taking the limit N →∞.

In both cases, we see that the mean-field approximation replaces agent-
to-agent interaction with a dependence on the measure µ̄ which represents
an equilibrium (or a socially optimal) configuration of a continuum of agents.
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Mean-field type control

Optimal control of an SDE of mean-field type is a nonstandard control prob-
lem. One common version of the mean-field type optimal control prob-
lem (MFTC) reads as follows: minimize

J(u) = E
[∫ T

0
f
(
t,Xt,P ◦X−1

t , ut
)
dt+ g

(
XT ,P ◦X−1

T

)]
,

over u ∈ Uad given that X solves the SDE of mean-field type

{
dXt = b

(
t,Xt,P ◦X−1

t , ut
)
dt+ σ

(
t,Xt,P ◦X−1

t , ut
)
dBt,

X0 = x.

Imagine a cooperating, perfectly informed, and interacting crowd of pedestri-
ans which we would like to model with a single decision maker, the so-called
representative agent. The agents cooperate, hence they can influence the
group characteristics. Because of the large number of agents, an aggregation
effect takes place and the impact of the community can be modeled with the
mean-field dependence P◦X−1

t (corresponding to µ in the preceding section).
The classical stochastic maximum principle (SMP) was extended to opti-

mal control with mean-field couplings of the form E[φ(Xt)] in [2, 11]. Hosking
[41] extended the SMP to mean-field couplings of the form E[φ(Xt, ut)]. Cou-
plings of the form φ(t,Xt,P ◦X−1

t , ut) are considered in [18, 12]. Stochastic
dynamic programming for mean-field type control is considered in [7, 62] and
the book [6] outlines solution techniques. Lacker proves in [58] the conver-
gence of a particular particle system (as N →∞) to the solution of a MFTC
using relaxed controls, extending the works [31, 72]. These convergence re-
sults motivate the use of MFTC to model cooperating crowds.

Example 15 (Linear quadratic). Consider the following linear-quadratic
control problem of mean-field type, min

u∈Uad
E
[∫ T

0
f(Xt,E[Xt], ut)dt+ g(XT ,E[XT ])

]
,

s.t. dXt = b(Xt,E[Xt], ut)dt+ σdWt, X0 = x0,
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where

f(x, y, u) :=
1

2

(
Qx2 +Q′y2 +Ru2

)
+Nxu+N ′yu+N ′′xy,

g(x, y) :=
1

2

(
Fx2 + F ′y2

)
+Gxy,

b(x, y, u) := Ax+A′y +Bu.

The maximum principle of [2] says that any optimal control û maximizes the
Hamiltonian pointwise,

ût = arg max
u∈U

H(t, X̂t,E[X̂t], u, pt, qt), P-a.s., a.e.-t,

where H(t, x, y, u, p, q) := pb(x, y, u)− f(x, y, u) and (p, q) solves the adjoint
equation


dpt = −∂xH(t, X̂t,E[X̂t], ût, pt, qt)dt+ qtdWt

− E
[
∂yH(t, X̂t,E[X̂t], ût, pt, qt)

]
dt,

pT = −∂xg(X̂T ,E[X̂T ])− E
[
∂yg(X̂T ,E[X̂T ])

]
.

(10)

If the problem does not depend explicitly on the marginal distribution of the
state trajectory, it reduces to the one analyzed in Example 10. The first order
optimality condition yields

ût =
B

R
pt −

N

R
X̂t −

N ′

R
E[X̂t].

Explicitly calculating the derivatives in (10) we get

∂xH = Ap− (Qx+Nu+N ′′y),

∂yH = A′p− (Q′y +N ′u+N ′′x),

∂xg = Fx+Gy,

∂yg = F ′y +Gx.
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The FBSDE system of mean-field type characterizing the optimal control is

dX̂t =

{
B2

R
pt +

(
A− N

R

)
X̂t +

(
A′ − N ′

R

)
E[X̂t]

}
dt+ σdWt,

X0 = x0

dpt = −

{(
A− NB

R

)
pt +

(
A′ − N ′B

R

)
E[pt]−

(
Q− N2

R

)
X̂t

−
(
Q′ + 2N ′′ − 2NN ′ + (N ′)2

R

)
E[X̂t]

}
dt+ qtdWt,

pT = −FX̂T − (F ′ + 2G)E[XT ].

(11)

System (11) is explicitly solvable up to a system of ODEs, a fact that has
been used in papers B and D, below.

Mean field games

A mean field game (MFG) is a system of equations that approximates the
asymptotic limit of a non-cooperative differential game in equilibrium with
identical and indistinguishable players when the number of players is large.
In many cases the MFG provides an approximate Nash equilibrium for a
game with a finite number of players. In this setting, individual interactions
become less and less relevant as the size of the population grows, and in
the limit only the distribution of player states matters. Although there were
earlier efforts to deal with large population games, such as [51], MFGs were
introduced independently by Huang, Malhamé, and Caines [43, 44], and by
Lasry and Lions [59, 60, 61] in the 2000s. The solution to a MFG can be
viewed as a fixed point to a two-step scheme: the MFG equilibrium control
û and the corresponding state trajectory distribution µ̂ are given by:

1. Fix µ = (µt)t∈[0,T ] ∈ P(C([0, T ];Rn)) and solve the standard optimal
control problem

min
u∈Uad

E
[∫ T

0
f(t,Xt, µt, ut)dt+ g(XT , µT )

]
,

s.t. dXt = b(t,Xt, µt, ut)dt+ σ(t,Xt, µt, ut)dBt,

X0 = x.

Call the solution uµ and the corresponding state trajectory Xµ.
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2. Find µ̂ such that P ◦
(
X µ̂
t

)−1
= µ̂t.

A necessary condition for any output of the matching procedure can be
stated in terms of an FBSDE system, with the forward part being the state
dynamics and the backward part being either the HJB or the adjoint equation
(depending on which technique that is used). MFG theory is presented in
detail in for example [16, 6, 19], to mention only a few references.

Example 16 (Linear quadratic). Consider the same setting as in Exam-
ple 15. Let H be the Hamiltonian

H(t, x, y, u, p) = f(t, x, y, u)− pb(t, x, y, u).

The stochastic maximum principle for mean field games [6, Ch. 3.2] says
that any control û that simultaneously satisfies 1. and 2. above minimizes the
Hamiltonian,

ût = arg min
u∈U

H(t, X̂t,E[X̂t], u, pt), a.e. t ∈ [0, T ], P-a.s.,

where the state trajectory corresponding to û, X̂, and the adjoint, p, are
given by the FBSDE system

dX̂t = b(X̂t,E[X̂t], ût)dt+ σdWt,

X0 = x0

dpt = −∂xH(t, X̂t,E[X̂t], ût, pt, qt)dt+ qdWt

pt = −∂xg(X̂T ,E[X̂T ]).

Notice how the y-derivatives of Example 15 are not present. The agent no
longer has the power to influence its distribution, which is in line with the
interpretation of games with a continuum of agents.

Mean-field type games

As optimal control can be extended to differential games, mean-field type
optimal control can be extended to mean-field type games (MFTG). The
element that distinguishes MFTG from SDG (as presented in Section 2.1) is
the presence of the player state and control distribution in the dynamics and
the cost. An MFTG is a game in which the payoffs and the state dynamics
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coefficient functions involve not only the state and actions profiles but also
the distributions of state-action process (or its marginal distributions). In
contrast to the MFG, in which a single player cannot influence the mean-
field terms, a single player in an MFTG can have a substantial impact on
the mean-field terms.

Consider the SDG from Section 2.1, but let its state trajectories and cost
functionals be of mean-field type: for i = 1, . . . , N ,{

dXi
t = bi

(
t,Xt,P ◦X−1

t ,ut
)
dt+ σi

(
t,Xt,P ◦X−1

t ,ut
)
dBi

t,

Xi
0 = xi,

(12)

and

Ji(u) = E
[∫ T

0
fi
(
t,Xt,P ◦X−1

t ,ut
)
dt+ g

(
XT ,P ◦X−1

T

)]
. (13)

The conflict that arises when each player minimizes her cost (which is coupled
to the other players’ strategies) is a nonzero-sum differentialN -player MFTG
and we may ask when this game is in Nash equilibrium.

The paper [83] reviews the literature on the MFTG (12)–(13) and many of
its variants and extensions. The paper also derives optimality conditions with
dynamic programming, with an SMP, and using the Wiener chaos expansion.
The direct method is applied to solve linear-quadratic MFTGs in [27]. An
overview of applications of MFTG theory in the engineering sciences is found
in [25].

2.3 Pedestrian crowd dynamics

Large crowds is a routine feature of today’s large cities. They can be found
not only at mass gatherings, but in train stations, malls, airports, and the-
aters. Pedestrian security is of real concern since a flawed design of the
pedestrian environment can be deadly. Within the last 100 years crowd
stampedes have caused over 4000 fatalities and ten times that many serious
injuries [38]. To address crowding in the design stage of a project, mathe-
matical models for crowd movement have been developed in the past decades
with the aim to replicate and predict human crowd behavior.
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Experimental studies of pedestrian behavior

Research on pedestrian behavior started in the 1960s with studies of the
pedestrian flows in urban areas. A summary of the history of empirical
studies of pedestrians with references is found in [34].

The real-world behavior of individual pedestrian has been studied in both
controlled and uncontrolled environments. The experiments deal with the
relation between walking speed and crowd density, the factors influencing
walking speeds, and pedestrian preferences. Exhaustive overviews of em-
pirical studies of pedestrian motion (and summaries of observed pedestrian
characteristics) are found in [84, 37, 9]. Ideally, mathematical models should
accommodate all the important pedestrian characteristics. This is not a
simple requirement since pedestrian behavior can be highly complex, as the
following two examples try to highlight.

• Flows in opposing directions (bidirectional flows) tend to separate, but
bidirectional flows of moderate density through bottlenecks most often
do not separate, instead the flow direction oscillates. While this effect
may be understood as friendly behavior (“you go first, please”), oscilla-
tory flows occur in simulations even in the absence of communication
[34].

• Have you ever seen a pillar in front of an exit or an escalator? At very
small crowd densities such obstacles hinder the outflow of pedestrians,
but at high densities their role may turn out to be essential for lowering
the evacuation time in a panic situation. This phenomenon is often
explained with Braess’ paradox [8], which says that if one or more
roads are added to a road network the travel time may increase for all
travelers on the network (the paradox can be framed as a Prisoner’s
Dilemma, in which players would be individually better off if the option
to Betray was removed).

Mathematical modeling approaches

Modeling a single individual will not lead to a mathematical description of
emerging collective behavior, which requires interaction. The interaction
is what makes pedestrian crowd modeling interesting from a mathematical
point of view. The idea that large-scale collective behavior emerges from
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local interactions among individuals has become a key concept in the under-
standing of crowd dynamics.

The most prevalent feature distinguishing between different modeling
approaches is the scale:

• In a microscopic description, the state of the system is a collection
of individual pedestrian states. Mathematical models are generally
stated in terms of ODEs/SDEs. This approach includes the “social
force” model [35], optimal control [40], and cellular automata [15];

• Amacroscopic description is used when the state is a gross quantity
like density, linear momentum, and kinetic energy. The pedestrians are
assimilated to this gross quantity, and the mathematical models are
generally stated in terms of conservation laws (PDEs). This approach
includes fluid-dynamic models [39, 45], optimal transport [65], and
mean-field games [26, 57];

• Kinetic models identify the individual states, however their repre-
sentation is delivered by a suitable probability distribution over the
(microscopic) states. Mathematical models describe the evolution of
that distribution by means of integro-differential equations. This ap-
proach includes swarming [20].

An in-depth survey of modeling approaches is found in [5]. Also, the more
recent doctoral thesis [1] includes a survey on state-of-the-art pedestrian
crowd modeling.

The mean-field approach

A pedestrian crowd consists of a large number of interacting individuals.
Crowd models with the microscopic pedestrian-to-pedestrian interaction re-
placed by interaction with a mean-field have become popular in this decade.
In [40] an MFG-based model is suggested, where the mean-field term approxi-
mates the average number of pedestrian interactions. Following Lasry-Lions’
seminal papers [59, 60, 61] plenty of MFG-based pedestrian crowd models
appeared [26, 57, 24]. Simultaneously, models applying the MFTC theory
appeared, see e.g. [13, 14, 24]. Let us first go through some of the strengths
of the mean-field approach, then some of its limitations.

The mean-field approach is able to replicate congestion- and aversion-
features of pedestrian crowds. For example, the simulation results of [57]
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suggest that obstacles help the crowd coordinate in the mean-field approach
(an example of Braess’ paradox). The term congestion covers a broad range
of mechanisms in a crowd. Some authors use it to describe the situation
when the cost of motion of an individual depends on the crowd density in
an increasing manner. This can be incorporated as a cost: with u being the
(controlled) velocity, X the pedestrian position, and m the crowd density,
consider the following congestion penalty

E

[∫ T

0
(c+ |ut|α)mβ(t,Xt)dt

]
, (14)

with c ≥ 0, α > 0 and β > 1. As the density increases, movement (i.e.
nonzero velocity u) becomes more costly. The presence of the crowd density
in (14) makes it a mean-field type congestion cost. The effect described above
is the so-called soft congestion. Hard congestion on the other hand refers to
physical bounds on the density. This can be included in the mean-field type
approach via inequality constraints on the crowd density [66, 17].

The mean-field approach grants the modeled pedestrians the ability to
perfectly anticipate future crowd movement. Crisitiani et al. explore other
information structures in [22]. They define six levels of pedestrian rationality.
The study comprehensibly categorizes models after their level of rationality
and not surprisingly MFTG/MFG-based models enjoy the highest levels of
rationality, implying that their area of application are situations in which
pedestrians feel that they can predict crowd movement and act accordingly.
A numerical case study is carried out in [14] that showcases the difference
between MFTC-based models and the Hughes model. In the latter, the
pedestrians only have access to the current state of the crowd. The lowest
levels of rationality is observed in panicking crowds, where pedestrians tend
move without any coordination, see [36] and references therein.
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Summary of papers

Here follows short summaries of the five appended papers in Part II that
make up the main part of this thesis. Moreover, the contributions of the
authors are clearly stated.

Paper A: Mean-field type modeling of nonlocal crowd
aversion in pedestrian crowd dynamics.

Paper A of this thesis is an edited version of the paper

• A. Aurell and B. Djehiche. Mean-field type modeling of nonlocal crowd
aversion in pedestrian crowd dynamics. SIAM Journal on Control and
Optimization, 56(1):434–455, 2018.

Summary Pedestrians sense their surroundings and may react to events
or obstacles far away from their current position. Paper A addresses non-
local interactions and competition between many subcrowds in the mean-
field approach of [57]. In the paper we model the ’personal space’ of each
pedestrian. The personal space is a neighbourhood where the pedestrian is
concerned with congestion. More specifically, pedestrian i with state tra-
jectory (Xi

t ; t ∈ [0, T ]) reacts aversively to crowding with the N − 1 other
pedestrians through a nonlocal cost. A smooth kernel φr defines a personal
space of radius r and the crowding cost payed over the time horizon [0, T ] is

E

∫ T

0

1

N − 1

∑
j 6=i

φr(X
i
t −X

j
t ) dt

 ,
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The crowding cost is combined with energy conservation and a terminal cost
realized at t = T to design a nonlocal risk measure Jr. We assume that
the pedestrians are cooperating, for example by following signs or a guide,
and that they are indistinguishable in terms of their joint state trajectory
distribution. These assumptions justify an approximation of the behavior
of the crowd with a mean-field type control problem. Optimal behavior is
characterized with a Pontryagin’s type maximum principle. Furthermore a
scenario of multiple non-cooperating crowds, constituting a mean-field type
game, is studied. The risk measure is sensitive to crowd affiliation, that is,
the level of aversion may vary from one crowd to another. The paper then
derives conditions under which the game between crowds is equivalent to an
optimal control problem.

Paper B: Modeling tagged pedestrian motion: A mean-field
type game approach

Paper B of this thesis is an edited version of the paper

• A. Aurell and B. Djehiche. Modeling tagged pedestrian motion: A
mean-field type game approach. Transportation Research Part B: Method-
ological, 121:168–183, 2019.

Summary The paper suggests a model for the so-called tagged pedestrians.
Tagged pedestrians plan their motion backwards from a specified target lo-
cation to an unspecified initial position. In this paper, the target location
is to be reached at a certain time. The model is based on the mean-field
type game approach and aims to be a decision making tool for the posi-
tioning of fire fighters, medical personnel, etc, during mass gatherings. The
fixed and non-negotiable final target leads us to model the tagged’s state
trajectory with backward SDEs (BSDE) of mean-field type. Let (Yt)t∈[0,T ]

and (Xt)t∈[0,T ] be the state trajectories of agents representative for a tagged
group and the surrounding crowd, respectively. The two groups interact and
their state trajectories satisfy the forward-backward SDE system,

dYt = by(t,Θy(t), Zt,Θx(t))dt+ Zt[dB
x
t dB

y
t ]∗,

dXt = bx(t,Θy(t), Zt,Θx(t))dt+ σx(t, θy(t), Zt, θx(t)dBx
t ,

YT = yT , X0 = x0,

where Θy(t) := (Yt,P ◦ Y −1
t , uyt ), θy(t) := (Yt,P ◦ Y −1

t ), and Θx, θx defined
correspondingly. The agents Y and X control their movement through the
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control processes uy and ux, respectively. We consider the game between the
tagged pedestrians and a surrounding crowd and derive necessary conditions
for its Nash equilibrium with an SMP. Scenarios including the bidirectional
flow, where tagged pedestrians move towards a target and the crowd moves
away from it, is studied numerically.

Paper C: Behavior near walls in the mean field approach to
crowd motion

Paper C of this thesis is an edited version of the paper

• A. Aurell and B. Djehiche. Behavior near walls in the mean field
approach to crowd motion. ArXiv preprint at arXiv:1907.07407.

The results of the paper were presented at the minisymposium Mean Field
Games: New Trends and Applications – Part 2 at the International Congress
on Industrial and Applied Mathematics (ICIAM) in 2019.

Summary Walls and other obstacles have a twofold effect on pedestrian
motion. Pedestrians may see the wall and react to it in advance. If the
pedestrian fails to avoid collision she ends up at the wall where her move-
ment is physically constrained. Boundary conditions at walls in the mean-
field approach is the topic of Paper C, in which the sticky reflected SDE of
mean-field type with boundary diffusion is proposed as an alternative to the
popular no-flux boundary condition. The proposed state equation only ad-
mits a weak solution. Therefore, we formulate the model as a weak optimal
control problem, i.e. the law of the state trajectory Pu is controlled through
a control process u. On a bounded and simply connected domain D with
C2-boundary ∂D the state equation of a pedestrian using control u reads

dXt = 1D(Xt)
(
β(t,X·,Pu ◦X−1

t , ut)dt+ dBu
t

)
+ 1∂D(Xt)

(
π(Xt)β(t,X·,Pu ◦X−1

t , ut)−
n(Xt)

2γ

)
dt

+ 1∂D(Xt)dB
∂D,u
t ,

X0 ∈ D̄,

where Bu is a Pu-Brownian motion, B∂D,u is the so-called boundary diffu-
sion under Pu, π is the projection on the tangent space of ∂D and n is the
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outward normal of ∂D. The proposed state equation allows the pedestrians
move and interact while spending time on the boundary. The paper begins
with a proof of existence and uniqueness of weak solutions under assumptions
on Lipschitz continuity and linear growth of the involved coefficients. Then,
we show how to explicitly solve some linear-quadratic problems and illustrate
pedestrian behavior in the model with a numerical experiment where speed
profiles from experimental data are replicated. The simulations showcase the
flexible boundary behavior in the suggested model.

Contribution The co-author of paper A, B, and C suggested the topic and
helped with the formulation of the solved problems. The candidate solved
the problems, performed the proofs of all the results, did all the coding and
numerical examples, and wrote the manuscripts.

Paper D: Mean-Field Type Games between Two Players
Driven by Backward Stochastic Differential Equations

Paper D of this thesis is an edited version of the paper

• A. Aurell. Mean-Field Type Games between Two Players Driven by
Backward Stochastic Differential Equations. Games, 9(4), 88, 2018.

Summary The paper treats a two-player finite-horizon mean-field type game
where the players’ state trajectories are terminally constrained. At the same
time, no initial condition is specified. To be specific, if the control pair
(u1, u2) is used, the players’ state trajectories Y 1 and Y 2 are given by the
system 

dY 1
t = b1

(
t,Θ1

t ,Θ
2
t , Z

1
t , Z

2
t

)
dt+ Z1

t dWt,

dY 2
t = b2

(
t,Θ2

t ,Θ
1
t , Z

1
t , Z

2
t

)
dt+ Z2

t dWt,

Y 1
T = y1, Y 2

T = y2,

(1)

where Θi
t :=

(
Y i
t ,P ◦ (Y i

t )−1, uit
)
for i = 1, 2. The players’ state distributions

are present in the drift terms in (1) through Θ1 and Θ2, making (1) a system
of BSDEs of mean-field type. The class of equations has been well studied
in the uncontrolled case [10, 19]. Here, the states are controlled and player
i aims to minimize the cost

E
[∫ T

0
f i
(
t,Θi

t,Θ
−i
t

)
dt+ hi

(
Y i

0 ,P ◦ (Y i
0 )−1, Y −i0 ,P ◦ (Y −i0 )−1

)]
.
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The competition between the two players constitutes a mean-field type game
of BSDEs. In the paper, we use the stochastic maximum principle to derive
necessary conditions for Nash equilibria of the game. The game in equilib-
rium is compared to an optimally controlled cooperating scenario. In the
cooperating scenario the average player cost, the so-called social cost, is
minimized.

Paper E: Stochastic Stability and Mixed Equilibria

Paper E of this thesis is an edited version of the paper

• A. Aurell, L. Dinetan, and G. Karreskog. Stochastic Stability and
Mixed Equilibria

The results of the paper were presented at the session Dynamics at the 15th
European Meeting on Game Theory (SING15) in 2019.

Summary This paper is concerned with finite two-player games that are
recurrently played in a large population. The players have access to a his-
tory of previously used action profiles which they use to form a belief on
how the opposing player will act. The paper proposes alternative game dy-
namics with a recency bias: more recent interactions are considered to be
more important in the belief-forming process. Existence and uniqueness of
an invariant distribution of historical action profiles is obtained. The paper
also studies the convergence of the history of action profiles to a collection
of minimal CURB blocks. The paper goes on to prove that in a certain
class of two-player games, mainly characterized by that the minimal CURB
blocks contain exactly one mixed Nash equilibrium each (e.g. the matching
pennies game), the distribution of historical action profiles concentrates on
the mixed Nash equilibria.

Contribution All the authors have contributed to all the parts of the work.
The idea to use recency bias in the context of conventions is due to G. Kar-
reskog. The idea to use a Krein-Rutman type theorem to analyze conver-
gence of the Markov chain to its stationary distribution is due to L. Dinetan.
All the proofs are due to myself and G. Karreskog, except the Lipschitz conti-
nuity (Section E.4) and Lemma 12 (Section E.5) which are due to L. Dinetan.
G. Karreskog has implemented the code for the numerical experiments. Most
of the writing has been done by myself and G. Karreskog.
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Abstract

We extend the class of pedestrian crowd models introduced by
Lachapelle and Wolfram (2011) to allow for nonlocal crowd aversion
and arbitrarily but finitely many interacting crowds. The new crowd
aversion feature grants pedestrians a ’personal space’ where crowding
is undesirable. We derive the model from a particle picture and treat it
as a mean-field type game. Solutions to the mean-field type game are
characterized via a Pontryagin-type maximum principle. The behavior
of pedestrians acting under nonlocal crowd aversion is illustrated by a
numerical simulation.

Keywords: crowd dynamics, crowd aversion, mean-field approxima-
tion, interacting populations, optimal control, mean-field type game

A.1 Introduction

When a pedestrian is walking through a crowd she chooses her path based
not only on her desired final destination but also takes the movement of other
surrounding pedestrians into account. The bullet points below are stated in
[18] as typical traits of pedestrian behavior.
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• Will to reach specific targets. Pedestrians experience a strong interac-
tion with the environment.

• Repulsion from other individuals. Pedestrians may agree to deviate
from their preferred path, looking for free surrounding room.

• Deterministic if the crowd is sparse, partially random if the crowd is
dense.

These properties appear in classical particle models. Other authors advocate
smart particle models with decision-based dynamics. In [18] some fundamen-
tal differences between classical and smart particle models are outlined. We
list a few of them in Table 1.

CLASSICAL

Robust interaction only through collisions

Blindness dynamics ruled by inertia

Local interaction is pointwise

SMART

Fragile avoidance of collisions and obstacles

Vision dynamics ruled at least partially by decision

Nonlocal interaction at a distance

Table 1

A smart particle model lets the pedestrians decide where to walk, with
what speed, etc. The choice is based on some rule that takes the available
information into account, such as the positioning and movement of other
pedestrians. Although more realistic, this approach has some complications.
If pedestrian i moves, all pedestrians accessing information on i’s state might
have to adapt their movements. The large number of connections where
information is exchanged within a crowd makes such models difficult to solve
in practice, due to their high computational complexity.
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The mean-field approach to modeling crowd aversion and congestion for
pedestrians was introduced in [15]. The pedestrians are treated as parti-
cles following decision-based dynamics and optimize their path by avoiding
densely crowded areas. Crowd aversion describes the avoidance of high den-
sity areas whereas congestion describes motion hindered by high density.
The theory of mean-field games originates from the independent works of
Lasry-Lions [16] and Huang-Caines-Malhamé [10]. The cost considered in
this early work is not of congestion type, i.e. the energy penalization is inde-
pendent of the density. The framework was extended to several populations
on the torus in [9] and to several populations on a bounded domain with
reflecting boundaries in [8], with further studies in [4, 6]. Mean field games
with a cost of congestion type was introduced by P-L. Lions in a lecture
series 2011 [17]. Congestion has also been studied in the mean-field type set-
ting. In [1] the finite horizon case is considered. In [3, 2] the authors prove
existence and uniqueness of weak solutions characterized by an optimization
approach based on duality, and propose a numerical method for mean-field
type control based on this result for the case of local congestion.

Turning to the crowd aversion model of this paper, a pedestrian with
position Xi,N in a crowd of N pedestrians controls her velocity such that
her risk measure, J i,N , is minimized over a finite time horizon [0, T ]. The
risk measure penalizes proximity to others, energy waste and failure to reach
a target area. In this paper we advocate for the use of the following nonlocal
contribution to the risk measure, reflecting a crowd averse behavior,

EN

∫ T

0

1

N − 1

N∑
j=1
j 6=i

φr

(
Xi,N
t −Xj,N

t

)
dt

 . (1)

The ‘personal space’ of a typical pedestrian is modeled by the function φr and
Xi,N
t −Xj,N

t is the distance between two pedestrians at time t. The personal
space has support within a ball of radius r so for positive r, (1) is a weighted
average of the crowding within the personal space and the pedestrian is not
effected by crowding outside it. Connecting to the terminology in Table
1, the case of positive r will be referred to as nonlocal crowd aversion. In
the limit r → 0 the personal space shrinks to a point and only pointwise
crowding, that is collisions, will effect the pedestrian. This will be referred
to as local crowd aversion.
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In emergency situations it is often in the interest of all pedestrians to get
to a certain place, such an exit. In evacuation planning and crowd manage-
ment at mass gatherings, it is in the interest of the planner to control the
crowd along paths and towards certain areas. Common to such situations is
the conflict between attraction to said locations and repulsive interactions
in the crowd. Pedestrians acting under nonlocal crowd aversion will order
themselves more densely in such places compared to pedestrians acting un-
der local crowd aversion. This effect is caused by the larger personal space,
the nonlocal crowd aversion term (1) is an average over a bigger set hence
allowing for higher densities in attractive areas. Higher densities will in turn
allow for more effective emergency planning when designing for example es-
cape routes. The numerical simulation in the end of this paper confirms this
effect. The pedestrians are allowed to move freely, but the observed effect
will become even more beneficial for a planner when introducing an environ-
ment for the pedestrians to interact with. In reality, crowd management is
often done by the strategic placement of obstacles such as pillars and walls.
In this paper, we observe that the pedestrians acting under nonlocal crowd
aversion travel at an overall lower risk than their local counterpart. This
suggests that a crowd with nonlocal crowd averse behavior could potentially
move at a higher velocity than its local counterpart which allows for faster
and more successful evacuations.

In [15] the mean-field optimal control is characterized through a matching
argument. This control is an approximate Nash equilibrium for the crowd.
It is, for each pedestrian, the best response to the movement of the rest of
the crowd. Furthermore, two crowds are considered where each pedestrian
has crowd-specific preferences such as the target location and crowd aversion
preference. The authors set up a mean-field game and show that it is equiv-
alent to an optimal control problem. In this paper, we look at the crowd
from the bird’s-eye view of an evacuation planner. We seek a ‘simultane-
ous’ optimal strategy for all the pedestrians involved in the crowd through a
mean-field type control approach for the single-crowd case and a mean-field
type game approach for the multi-crowd case.

The contributions of this paper are the following. We identify a parti-
cle model that is approximated by the mean-field model for crowd aversion
proposed in [15]. This gives us insights into how the interaction between
pedestrians in the crowd effects the mean-field model and reveals that the
crowd of [15] has a locally crowd averse behavior. Our second contribution
is a relaxation of the locality of the pedestrian model by allowing for inter-
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action between pedestrians at a distance. Instead of only interacting with
other pedestrians through collisions, each pedestrian is here given a personal
space where she dislikes crowding. This conceptual change is realistic since
pedestrians do not need to be in physical contact to interact. As discussed
above, the suggested nonlocal crowd aversion model allows for the following
desirable features:

• Higher densities in target areas such as exits or escape routes where the
pedestrians have to choose between more crowding and not reaching
the target.

• Lower risk, which implies a potential increase in pedestrian velocity
allowing for faster exits and a larger flow of people, a very useful feature
in the design of evacuation strategies.

Finally, we generalize the model to allow for an arbitrary number of interact-
ing crowds. This multi-crowd scenario is treated as a mean-field type game
and is linked to an optimal control problem, for which we prove a sufficient
maximum principle.

The paper is organized as follows. After a short section of preliminar-
ies, we consider the single-crowd case in Section A.3. In Section A.4, the
multi-crowd case is studied. The results derived in Section A.3 generalize
to an arbitrary finite number of interacting crowds and we derive sufficient
conditions for a solution with the maximum principle. An example that
highlights the difference between local and nonlocal crowd aversion is solved
numerically in Section A.5. For the sake of clarity, all technical proofs are
moved to an appendix.

A.2 Preliminaries

Given a general Polish space S, let P(S) denote the space of probability
measures on B(S). For an element s ∈ S, the Dirac measure on s is an
element of P(S) and will be denoted by δs. Let P(S) be equipped with the
topology of weak convergence of probability measures. A metric that induces
this topology is the bounded 1-Lipschitz metric,

dP(S)(µ, ν) := ‖µ− ν‖1 = sup
f∈L1

〈µ, f〉 − 〈ν, f〉 ,
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where L1 is the set of real-valued functions on S bounded by 1 and with
Lipschitz coefficient 1. With his metric, P(S) is a Polish space. The space
of probability measures on B(S) with finite second moments will be denoted
by P2(S),

P2(S) :=

{
ν ∈ P(S) : ∃ s0 ∈ S that satisfies

∫
S
dS(s, s0)2ν(ds) <∞

}
.

Equipped with the topology of weak convergence of measures and conver-
gence of second moments, P2(S) is a Polish space. A compatible complete
metric is the square Wasserstein metric dP2(S), for which the following in-
equalities will be useful. For all si, s̃i ∈ S and for all N ∈ N,

d2
P2(S)

(
1

N

N∑
i=1

δsi ,
1

N

N∑
i=1

δs̃i

)
≤ 1

N

N∑
i=1

dS(si, s̃i)
2. (2)

For two random variables X and X̃ with distribution ν and ν̃, respectively,

d2
P2(S)(ν, ν̃) ≤ E

[
|X − X̃|2

]
.

Let T > 0 be a finite time horizon and let Rd, d ∈ N, be equipped with the
Euclidean norm. Let M and M2 be the spaces of continuous functions on
[0, T ] with values in P(Rd) and P2(Rd) respectively,

M := C([0, T ];P(Rd)), M2 := C([0, T ];P2(Rd)).

Equipped with the uniform metrics dM and dM,

dM(m,m′) := sup
t∈[0,T ]

dP(Rd)(mt,m
′
t),

dM2(m,m′) := sup
t∈[0,T ]

dP2(Rd)(mt,m
′
t),

M and M2 are Polish spaces. The mathematical results stated above can
be found in [20, Chapter 2] and [11, Chapter 14].

Let A be a compact subset of Rd. Given a filtered probability space
(Ω,F ,F,P), denote by A the set of A-valued F-adapted processes such that

E
[∫ T

0
|at|2dt

]
<∞.
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An element of A will be called an admissible control. From the context, it
will be clear which stochastic basis the notation A is referring to.

Given a vector x = (x1, . . . , xN ) in the product space SN and an element
y ∈ S, we let

x−i := (x1, . . . , xi−1, xi+1, . . . , xN ),

(y, x−i) := (x1, . . . , xi−1, y, xi+1, . . . , xN ).

Furthermore, the law of any random quantity X will be denoted by L(X)
and any index set of the form {1, . . . , N} will be denoted by [[N ]].

A.3 Single-crowd model for crowd aversion

A.3.1 The particle picture

Let (ΩN ,FN ,FN ,PN ) be a complete filtered probability space for each N ∈
N. The filtration FN is right-continuous and augmented with PN -null sets. It
carries the independent d-dimensional FN -Wiener processesW 1,N , . . . ,WN,N .
Let, for each i ∈ [[N ]], the FN0 -measurable Rd-valued random variable ξi,N

be square-integrable and independent of (W 1,N , . . . ,WN,N ). Given a vector
of admissible controls, āN = (a1,N , . . . , aN,N ) ∈ AN , consider the system

dXi,N
t = b(t,Xi,N

t , ai,Nt )dt+ σ(t,Xi,N
t )dW i,N

t , Xi,N
0 = ξi,N , i ∈ [[N ]]. (3)

Proposition 1. Assume that

(A1) b : [0, T ]×Rd ×A→ Rd and σ : [0, T ]×Rd → Rd×d are continuous in
all arguments.

(A2) For all x1, x2 ∈ Rd and a1, a2 ∈ A, there exists a constant K > 0
independent of (t, x1, x2, a1, a2) such that

|b(t, x1, a1)− b(t, x2, a2)| ≤ K(|x1 − x2|+ |a1 − a2|),
|σ(t, x1)− σ(t, x2)| ≤ K|x1 − x2|,

|b(t, x1, a1)|+ |σ(t, x1)| ≤ K(1 + |x1|+ |a1|).
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Under these assumptions, (3) has a unique strong solution in the sense that

Xi,N
0 = ξi,N ,∫ t

0

∣∣b(s,Xi,N
s , ai,Ns )

∣∣+
∣∣σ(s,Xi,N

s )
∣∣2 ds <∞, t ∈ [0, T ], P-a.s.

Xi,N
t = ξi,N +

∫ t

0
b(s,Xi,N

s , ai,Ns )ds+

∫ t

0
σ(s,Xi,N

s )dW i,N
s , t ∈ [0, T ].

Furthermore, the strong solution Xi,N satisfies the estimate

EN

[
sup
s∈[0,t]

|Xi,N
s |2

]
≤ Kt

(
1 + EN

[
|ξi,N |2

])
for all t ∈ [0, T ], for all i ∈ [[N ]] and for some positive constant Kt depending
only on t.

Proof. A proof can be found in [24, Chapter 1, Theorem 6.16]. Note that
Kt is independent of ai,N by compactness of A.

The process Xi,N models the motion of an individual in a crowd of N
pedestrians, from now on called an N -crowd, who partially controls her
velocity through the control ai,N . Since her control is adapted to the full
filtration FN , the model allows for the pedestrian to take every movement in
the crowd into account. Her motion is also influenced by external forces, such
as the random disturbance driven by W i,N . The motion of the pedestrian
may be modeled more generally than above by introducing an explicit weak
interaction in the drift [10], such as

dXi,N
t =

1

N

N∑
j=1

b̃(t,Xi,N
t , ai,Nt , Xj,N

t )dt+ σ(t,Xi,N
t )dW i,N

t .

It is also possible to let a common disturbance effect all pedestrians [13], to
model for example evacuations during an earthquake, a fire, a tsunami etc.

Individual i evaluates the state of the N -crowd, given by the control
vector āN = (a1,N , . . . , aN,N ), according to her measure of risk

J i,Nr (āN )

:= EN
[∫ T

0

(
1

2
|ai,Nt |2 +

∫
Rd
φr(X

i,N
t − y)µ−i,Nt (dy)

)
dt+ Ψ(Xi,N

T )

]
,

56



Nonlocal crowd aversion

whereX1,N , . . . , XN,N solves (3) given āN and µ−i,Nt is the empirical measure
of X−i,Nt . The region where crowding has an influence on the pedestrian’s
choice of control, her ’personal space’, is ideally modeled by a normalized
indicator function,

Ir(x) :=

{
Vol(Br)−1, x ∈ Br,
0, x /∈ Br,

where Br ⊂ Rd is the ball with radius r > 0 centered at the origin and
Vol(Br) is its volume. The term∫

Rd
Ir(Xi,N

t − y)µ−i,Nt (dy)

then represents the number of pedestrians around Xi,N
t within a distance less

than r at time t [22]. To simplify the calculations we will use a smoothed
version of Ir. Let γδ be a mollifier, i.e. γδ(x) := γ(x/δ)/δ where γ is a
smooth symmetric probability density with compact support. For a fixed
δ > 0, we set

φr(x) := (γδ ∗ Ir) (x). (4)

For convergence estimates later in this section, we assume that the final cost
Ψ satisfies the following condition.

(A3) For all x1, x2 ∈ Rd there exists a constant K > 0 independent of
(x1, x2) such that

|Ψ(x1)−Ψ(x2)| ≤ K|x1 − x2|.

The interpretation of the risk measure is the following. The first term penal-
izes energy usage whereas the second term penalizes paths through densely
crowded areas. The final cost penalizes deviations from specific target re-
gions. Typically the final cost takes large values everywhere except in areas
where the pedestrians want to end up, places like meeting points, evacuation
doors, etc.
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A.3.2 The mean-field type control problem

Let (Ω,F ,F,P) be a complete filtered probability space such that the fil-
tration is right-continuous and augmented with P-null sets. Let F carry
a Wiener process W and let ξ be an F0-measurable and square-integrable
Rd-valued random variable independent of W . Given a control a ∈ A, the
mean-field type dynamics is

dXt = b(t,Xt, at)dt+ σ(t,Xt)dWt, X0 = ξ. (5)

By Proposition 1 there exists a unique strong solution to (5). The mean-field
type risk measure is given by

Jr(a) = E
[∫ T

0

1

2
|at|2 +

∫
Rd
φr(Xt − y)µXt(dy)dt+ Ψ(XT )

]
. (6)

where µXt is the distribution of Xt.

Remark 2. The difference between a mean-field type control problem and
a mean-field game is that in general mean-field games can be reduced to a
standard control problem and an equilibrium while a mean-field type control
problem is a nonstandard control problem [5, 7]. The matching procedure
to find the fixed point (equilibrium) for a mean-field game is pedagogically
described as follows [10, 16]:

(i) Fix a deterministic function µt : [0, T ]→ P2(Rd).

(ii) Solve the stochastic control problem

â = arg min
a∈A

E
[∫ T

0

1

2
|at|2 +

∫
Rd
φr(Xt − y)µt(dy)dt+ Ψ(XT )

]
,

where X is the dynamics corresponding to a.

(iii) Determine the function µ̂t : [0, T ]→ P2(Rd) such that µ̂t = L(X̂t) for
all t ∈ [0, T ] where X̂ is the dynamics corresponding to the optimal
control â.

In the mean-field type control setting the measure-valued process (µXt)t∈[0,T ]

is not considered to be a separate variable but determined by the input control
process.
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A.3.3 Convergence of the state process

Let the initial data ξ1,N , . . . , ξN,N satisfy the following assumptions:

(B1) supN∈N EN
[

1
N

∑N
i=1 |ξi,N |2

]
<∞ for all i ∈ [[N ]];

(B2) (ξ1,N , . . . , ξN,N ) is exchangeable for all N ∈ N;

(B3) limN→∞ L
(

1
N

∑N
i=1 δξi,N

)
= δµ0 in P(P2(Rd)).

Under (B1)-(B3) the sequence (ξi,N )N∈N is tight and a subsequence can be
extracted that converges in distribution to a µ0-distributed random variable,
from now on denoted by ξ. We make the following assumption about the
controls:

(B4) The controls are of feedback form, ai,Nt (ω) = aN (t,Xi,N
t (ω)), where

each aN is an A-valued deterministic function and aN converge uni-
formly to a as N →∞. Furthermore,

sup
N∈N

EN
[∫ T

0
|aN (t,Xi,N

t )|2
]
<∞, ∀ i ∈ [[N ]].

Remark 3. Assumption (B4) implies that, while the paths of the pedestri-
ans in the N -crowd may differ, they are outcomes from a symmetric joint
probability distribution. By exchangeability of (ξi,N ,W i,N )Ni=1,

(aN (t,Xi,N
t ))Ni=1

d
= (aN (t,X

π(i),N
t ))Ni=1 (7)

for all permutations π of [[N ]]. The interpretation is that we cannot distin-
guish between pedestrians in the crowd, the pedestrians are anonymous.

Proposition 4. If µN is the empirical measure of X1,N , . . . , XN,N , the so-
lution of (3) given aN , then {L(µN ), N ∈ N} is tight in P(M2).

Proof. The empirical measures are elements ofM2 by Proposition 1 together
with (B1) and (B2). The proof of tightness in the case of uncontrolled
diffusions is found in [19]. The introduction of a control does not change the
situation.
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Recall that a sequence {Xn} of random variables converges weakly to X
in a Polish space if and only if {Xn} is tight and every convergent subse-
quence of {Xn} converges to X. The tightness of the empirical measures
implies that along a converging subsequence, µN converges weakly to the
measure-valued process µ that for all f ∈ C2

b (Rd) satisfies

〈µt, f〉− 〈µ0, f〉 =

∫ t

0

〈
µs, b(s, ·, a(s, ·)) · ∇f +

1

2
Tr
[
σσT (s, ·)∆f

]〉
ds. (8)

Since the strong solution of (5) is unique, the weak solution is also unique
[23] which is equivalent to uniqueness of solutions to (8) [12]. We have the
following result.

Theorem 5. Let Xi, i ∈ N, be independent copies of the strong solution of
(5). Under assumptions (A1)-(B4), Xi,N converges weakly to Xi as N →∞.

Proof. Applying Sznitman’s propagation of chaos theorem [21], the result
follows by the weak convergence of µN to the deterministic measure µ.

A.3.4 Convergence of the risk measure

From the previous section we know that Xi,N , the strong solution of (3),
converges weakly to X, the strong solution of (5), and we know that µNt con-
verges weakly to µXt . Applying (2), we have that dP2(Rd)(µ

−i,N
t , µNt ) ≤ 2/N ,

so µ−i,Nt converges weakly to µXt as well. By Skorokhod’s representation the-
orem [11, Theorem 3.30] we can represent (up to distribution) all the random
variables mentioned above in a common probability space (Ω̃, F̃ , P̃) where
they converge P̃-almost surely. This allows us to write

|J i,Nr (aN )− Jr(a)|

≤ EP̃

[∫ T

0

{∣∣∣∣12 |aN (t,Xi,N
t )|2 − 1

2
|a(t,Xt)|2

∣∣∣∣
+

∣∣∣∣∣
∫
Rd
φr(X

i,N
t − y)µ−i,Nt (dy)−

∫
Rd
φr(Xt − y)µXt(dy)

∣∣∣∣∣
}
dt

+
∣∣∣Ψ(Xi,N

T )−Ψ(XT )
∣∣∣ ].
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By compactness of A, the continuous mapping theorem, (B4), and the dom-
inated convergence theorem,

lim
N→∞

EP̃

[∫ T

0

∣∣∣∣12 |aN (t,Xi,N
t )|2 − 1

2
|a(t,Xt)|2

∣∣∣∣
]

= 0.

By (A3), Proposition 1, and the dominated convergence theorem we have
that EP̃[|Ψ(Xi,N

T )−Ψ(XT )|] = 0 as N →∞. Note that

EP̃
[∫ T

0

∣∣∣∣∫
Rd
φr(X

i,N
t − y)µ−i,Nt (dy)−

∫
Rd
φr(Xt − y)µXt(dy)

∣∣∣∣ dt]
≤ EP̃

[∫ T

0

∣∣∣∣∫
Rd
φr(X

i,N
t − y)µ−i,Nt (dy)−

∫
Rd
φr(X

i,N
t − y)µXt(dy)

∣∣∣∣ dt]
+ EP̃

[∫ T

0

∣∣∣∣∫
Rd
φr(X

i,N
t − y)µXt(dy)−

∫
Rd
φr(Xt − y)µXt(dy)

∣∣∣∣ dt] .
As N → ∞, the first term on the right hand side tends to zero by the
definition of weak convergence while the second tends to zero by the Contin-
uous Mapping Theorem and Dominated Convergence. We have proved the
following result.

Theorem 6. Let a ∈ A and aN = (a, . . . , a) ∈ AN , then J i,Nr (aN ) =
Jr(a) + εN where limN→∞ εN = 0.

A.3.5 Solutions to the N-crowd model and the MFT
control problem

The notion of solutions of the the N -crowd model (N-1) and the mean-field
type control problem (MFT-1) for crowd aversion will now be defined.

Definition 7 (Solution to N-1). Let âN = (â, . . . , â) ∈ AN for some fixed
â ∈ A and let aN = (a, . . . , a) ∈ AN for an arbitrary strategy a ∈ A. Then
âN is a solution to N-1 if

J i,Nr (âN ) ≤ J i,Nr (aN ), ∀a ∈ A, ∀i ∈ [[N ]].

If, for a given ε > 0, â satisfies

J i,Nr (âN ) ≤ J i,Nr (aN ) + ε, ∀a ∈ A, ∀i ∈ [[N ]],

then âN is an ε-solution to N-1.
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Definition 8 (Solution to MFT-1). If â ∈ A satisfies

Jr(â) ≤ Jr(a), ∀a ∈ A,

then â is a solution to MFT-1.

The following result motivates the use of MFT-1 as an approximation to
N-1. It confirms that we can construct an approximate solution to N-1 using
a solution to MFT-1.

Theorem 9. If â solves MFT-1, then âN = (â, . . . , â) is a εN -solution,
where εN → 0 as N →∞, to N-1 among feedback strategies.

Proof. The proof follows straight away by Theorem 6.

Remark 10. It is known that the solution of a mean-field game corresponds
to an approximate Nash equilibrium for N-1, see e.g. [10, 16]. To the best
of our knowledge, this has not been shown to be true for solutions to mean-
field type control problems. Theorem 9 has the following interpretation: a
mean-field type optimal control induces an approximate solution for the N -
crowd if the crowd consists homogeneous pedestrians and thus a representa-
tive pedestrian determines the control of all. This was in fact visible already
in Theorem 6.

A.3.6 Deterministic version of MFT-1

We want to present results in a setting similar to [15] to highlight the dif-
ferences between the models. To do this, we make the assumption that µXt
has a density mX(t, ·) for all t ∈ [0, T ]. An example of sufficient conditions
for the existence is bounded drift and diffusion [19]. Under this assumption,
we may rewrite (5)-(6) into a deterministic problem for mX . Furthermore,
an admissible control can not be stochastic in the deterministic problem for-
mulation. The full stochastic problem will be analyzed in future work. We
have a new definition of an admissible control.

Definition 11 (Ad). A square-integrable deterministic function a : [0, T ]×
Rd → A will be called an admissible control for the deterministic problem
and the set of such functions is denoted by Ad.
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By (8) the density mX satisfies∫
Rd
f(x)mX(t, x)dx−

∫
Rd
f(x)mX(0, x)dx =∫ t

0

∫
Rd

(
b(s, x, a(s, x)) · ∇f(x) +

1

2
Tr
[
σσT (s, x)∇2f(x)

] )
mX(s, x)dsdx,

for all f ∈ C2
b (Rd) and for all t ∈ [0, T ], hence it is a weak solution to

∂mX

∂t
(t, x) =

1

2
Tr
[
∇2σσTmX(t, x)

]
−∇ · (b(t, x, a(t, x))mX(t, x)),

mX(0, x) = density of µ0.

We arrive to a deterministic version of MFT-1 (dMFT-1),
min
a∈Ad

Jdet
r (a)

s.t.
∂mX

∂t
(t, x) =

1

2
Tr
[
∇2σσTmX(t, x)

]
−∇ · (b(t, x, a(t, x))mX(t, x)),

mX(0, x) = density of µ0.

where

Jdet
r (a) :=

∫
Rd

∫ T

0

{
1

2
|a(t, x)|2mX(t, x) +(∫

Rd
φr(x− y)mX(t, y)dy

)
mX(t, x)

}
dtdx+

∫
Rd

Ψ(x)m(T, x)

]
dx.

Remark 12. Note that φr converges weakly to δ0 as r → 0. In this limit,
the risk measure tends to

Jdet
0 (a) =

∫
Rd

∫ T

0

1

2
|a(t, x)|2mX(t, x) +mX(t, x)2dt+ Ψ(x)m(T, x)dx,

which is exactly the risk analyzed in the pedestrian crowd model of [15].
Clearly this case corresponds to a situation where the pedestrian will only
react to how likely it is for her to ‘bump’ into other pedestrians. In the case
of positive r, the pedestrian is effected by crowding within a personal space of
nonzero range and reacts to the level of the density within this range. This
is the distinction between locally and nonlocally crowd averse behavior.
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A.4 Multi-crowd model for crowd aversion

A.4.1 The particle picture

In this section, crowd averse behavior between several crowds is introduced.
The crowds are allowed to differ in their opinions on target areas and/or
the level of crowd aversion. This inhomogeneity is introduced in the risk
measure. Let the setup be as in Section A.3, except now FN carries NM
independent FN -Wiener processes W i,j,N , i ∈ [[N ]], j ∈ [[M ]] and there is
for all i ∈ [[N ]], j ∈ [[M ]] a square-integrable FN0 -measurable Rd-valued
random variable ξi,j,N independent of all the Wiener processes. Given NM
admissible controls ai,j,N , consider the system{

dXi,j,N
t = b(t,Xi,j,N

t , ai,j,Nt )dt+ σ(t,Xi,j,N
t )dW i,j,N

t ,

Xi,j,N
0 = ξi,j,N , i ∈ [[N ]], j ∈ [[M ]].

(9)

In view of Proposition 1 there exists a unique strong solution to (9). Pedes-
trian i in crowd j evaluates a := (ai,j,N )i,j according to its individual risk
measure

J i,j,Nr,Λ (a)

:= EN
[∫ T

0

1

2
|ai,j,N |2 +

∫
Rd
φr(X

i,j,N
t − y)ν̃j,Nt,Λ (dy)dt+ Ψj(X

i,j,N
T )

]
,

where

ν̃j,Nt,Λ :=
M∑
k=1

λjk
1

N

N∑
l=1

δ
Xl,k,N
t

,

λjk are bounded and non-negative real numbers, and Λ = (λjk)jk. The
weights λjk quantify the crowd aversion preferences in the model. If λjk is
high, pedestrians in crowd j pay a high price for being close to pedestrians
in crowd k. If λjk is zero, pedestrians in crowd j are indifferent to the
positioning of pedestrians in crowd k. Note that if λjk = 1 for j = k
and 0 otherwise, the crowds are disconnected in the sense that there is no
interaction between pedestrians from different crowds.

A.4.2 The mean-field type model

Again, let the setup be as in Section A.3 except that F now carries M
independent F-Wiener processes W j , j ∈ [[M ]], and there are M square-
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integrable F0-measurable Rd-valued random variables ξj , j ∈ [[M ]], inde-
pendent of all the Wiener processes. Given a vector of admissible controls
āM = (a1, . . . , aM ), the mean-field type dynamics are

dXj
t = b(t,Xj

t , a
j
t )dt+ σ(t,Xj

t )dW j
t , Xj

0 = ξj , j ∈ [[M ]]. (10)

There exists a unique strong solution to (10) by Proposition 1. The mean-
field type risk measure for crowd j ∈ [[M ]] is given by

J jr,Λ(āM ) := E
[∫ T

0

1

2
|aj |2 +

∫
Rd
φr(X

j
t − y)νjt,Λ(dy)dt+ Ψj(X

j
T )

]
,

where νjt,Λ :=
∑M

k=1 λjkµXk
t
.

A.4.3 Solutions of N-M and MFT-M

The convergence results for the single-crowd case generalize to multiple
crowds under the following assumptions:

(C1) supN∈N EN
[

1
N

∑N
i=1 |ξi,j,N |2

]
<∞ for all j ∈ [[M ]];

(C2) (ξ1,j,N , . . . , ξN,j,N ) is exchangeable for all j ∈ [[M ]];

(C3) limN→∞ L
(

1
N

∑N
i=1 ξ

i,j,N
)

= δ
µj0

in P(P2(Rd)) for all j ∈ [[M ]];

(C4) The controls are of feedback form, ai,j,Nt (ω) = aj,N (t,Xi,j,N
t (ω)) where

each aj,N is a deterministic A-valued function and aj,N converge uni-
formly to aj as N →∞. Furthermore,

sup
N∈N

EN
[∫ T

0
|aj,N (t,Xi,j,N

t )|2
]
<∞, ∀ i ∈ [[N ]], ∀ j ∈ [[M ]].

Under (A1)–(A3) for all final costs Ψj and (C1)–(C4) the results from Section
A.3.3 and Section A.3.4 immediately generalize to multiple crowds. Next,
solutions to theN -crowd model (N-M) and the mean-field type model (MFT-
M) for the multi-crowd case are defined.

Definition 13 (Solution to N-M). For any aj ∈ A, let (aj)N = (aj , . . . , aj) ∈
AN . The control vector ((â1)N , . . . , (âM )N ) is a solution to N-M if

J i,j,Nr,Λ ((â1)N , . . . , (âM )N ) ≤ J i,j,Nr,Λ ((aj)N , (â−j)N ), ∀ aj ∈ A, ∀ j ∈ [[M ]].
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If

J i,j,Nr,Λ ((â1)N , . . . , (âM )N ) ≤ J i,j,Nr,Λ ((aj)N , (â−j)N ) + ε, ∀ aj ∈ A, ∀ j ∈ [[M ]]

for ε > 0, ((â1)N , . . . , (âM )N ) is an ε-solution to MFT-M.

Definition 14 (Solution to MFT-M). The vector âM = (â1,M , . . . , âM,M ) ∈
AM is a solution to MFT-M if

J jr,Λ(âM ) ≤ J jr,Λ(a, â−j,M ), ∀ a ∈ A, ∀ j ∈ [[M ]].

Remark 15. There is a fundamental difference between the definition of
solutions in the single-crowd case and in the multi-crowd case. The latter
is a Nash equilibrium while the former is an optimal control. So, what has
changed? We still have anonymity between pedestrians within a crowd but the
vector of all controls used in the multi-crowd case, ((aj,N (t,Xi,j,N

t ))Ni=1)Mj=1

for N-M and (aj(t,Xj
t ))Mj=1 for MFT-M, is not exchangeable (cf. (7)). From

our point of view, we may distinguish between two pedestrians from different
crowds and hence the pedestrians are not anonymous anymore. Thus, it
makes sense to look at a game problem between the crowds.

The approximation result Theorem 9 generalizes to the multi-crowd case.

Theorem 16. Assume that âM is a solution to MFT-M. Then the vector
((â1,M )N , . . . , (âM,M )N ) is an εN -solution to N-M.

Proof. The proof follows exactly the same steps as the proof of Theorem
9.

Finally, under the assumption that µ
Xj
t
admits a density mXj (t, ·), we

rewrite MFT-M into a deterministic problem (dMFT-M).

Definition 17 (Solution to dMFT-M). A control vector â = (â1, . . . , âM ) ∈
AMd solves dMFT-M if

J j,det
r,Λ (â) ≤ J j,det

r,Λ (a, â−j), ∀ a ∈ Ad, ∀ j ∈ [[M ]],

where

J j,det
r,Λ (â) :=

∫
Rd

[∫ T

0

{
1

2
|âj(t, x)|2mj(t, x)

+

M∑
k=1

λjk

∫
Rd
φr(x− y)mk(t, y)dymj(t, x)

}
dt+ Ψj(x)mj(T, x)

]
dx
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and mj solves


∂mj

∂t
(t, x) =

1

2
Tr
[
∇2(σσTmj)(t, x)

]
−∇ · (b(t, x, âj(t, x))mj(t, x)),

mj(0, t) = the density of µj0.

Remark 18. In the limit r → 0 the risk measure is

J j,det0,Λ (a) =

∫
Rd

[∫ T

0

{
1

2
|aj(t, x)|2mj(t, x)

+
M∑
k=1

λj,kmk(t, x)mj(t, x)

}
dt+ Ψj(x)mj(T, x)

]
dx.

(11)

The interpretation is the same as in the single-crowd model, when r → 0
the personal space of the pedestrians shrink to a singleton and only collisions
have an impact on the choice of control. Note that (11) with parameters
M = 2, λ11 = λ22 = 1, and λ12 = λ21 = λ is exactly the cost used in [15].

A.4.4 An optimal control problem equivalent to dMFT-M

In this section an optimal control problem is introduced. It is shown to have
the same solution as dMFT-M, so instead of solving the game, an optimal
control is characterized by a Pontryagin-type maximum principle. To ease
notation, let ϕ = (ϕ1, . . . , ϕM ) for ϕ ∈ {Ψ(x),m(t, x), |a(t, x)|2}. Consider
the following optimization problem,



min
a∈AMd

Jr,Λ̄(a)

s.t.
∂mj

∂t
(t, x) =

1

2
Tr
[
∇2(σσTmj)(t, x)

]
−∇ · (b(t, x, aj(t, x))mj(t, x)),

mj(0, x) = density of µj0, j ∈ [[M ]],

(OC)
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where

Jr,Λ̄(a) :=

∫
Rd

[∫ T

0

{
1

2
|a(t, x)|2 ·m(t, x) +Gφr [m]T (t, x)Λ̄m(t, x)

}
dt

+ Ψ(x) ·m(T, x)

]
dx, Λ̄ ∈ RM×M ,

Gφr [m](t, x)

:=

(∫
Rd
φr(x− y)m1(t, y)dy, . . . ,

∫
Rd
φr(x− y)mM (t, y)dy

)
.

The following proposition is the first link between dMFT-M and (OC).

Proposition 19. If â solves (OC) and Λ = Λ̄ + Λ̄T − diag(Λ̄), then â is a
solution to dMFT-M.

Proof. The proof is found in Appendix A.6.1.

The condition Λ = Λ̄ + Λ̄T − diag(Λ̄) forces Λ to be symmetric and the
interpretation is that the aversion between crowds must be symmetric, i.e.
if one crowd is averse to another crowd, the latter crowd must be equally
averse towards former. One can of course consider other situations, but then
it is not possible to rewrite the game into an optimization problem on the
form of (OC). Therefore from now Λ is assumed to satisfy the condition
of Proposition 19. Note that Λ̄ does not necessarily have to be symmetric.
Towards a characterization of the optimal control, let

f(t, x, a,m) :=
1

2
|a(t, x)|2 ·m(t, x) +Gφr [m](t, x)T Λ̄m(t, x),

g(x,m) := Ψ(x) ·m(T, x),

and let, with some abuse of notation,

Tr
[
σσT∇2p(t, x)

]
:=
(
Tr
[
σσT∇2p1(t, x)

]
, . . . ,Tr

[
σσT∇2pM (t, x)

])
,

Tr
[
∇2(σσTm)(t, x)

]
:=
(
Tr
[
∇2(σσTm1)(t, x)

]
, . . . ,Tr

[
∇2(σσTmM )(t, x)

])
.
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Theorem 20 (Sufficient maximum principle for (OC)). Let â ∈ AMd , let

H(t, x, a,m, p) := f(t, x, a,m) +

M∑
j=1

b(t, x, aj(t, x))mj(t, x) · ∇pj(t, x),

and let p solve the adjoint equation

∂p

∂t
(t, x) = −

(
1

2
|â(t, x)|2 +Gφr [m̂]T (t, x)(Λ̄ + Λ̄T )

+ (b(t, x, â1(t, x)) · ∇p1(t, x), . . . , b(t, x, âM (t, x)) · ∇pM (t, x))

+
1

2
Tr
[
σσT∇2p(t, x)

])
,

p(T, x) = Ψ(x).

(12)

Assume that H is differentiable with respect to a and that

(a,m) 7→
∫
Rd
H(t, x, a,m, p)dx (13)

is convex for all t ∈ [0, T ]. Then â solves (OC) if for all wj ∈ Ad and
j ∈ [[M ]] it holds that∫

Rd

∫ T

0
DajH(t, x, â(t, x), m̂(t, x), p) · wj(t, x)dtdx = 0. (14)

Proof. Let a, â ∈ AMd and let aε := εa + (1 − ε)â, ε ∈ (0, 1). Let mε and m̂
satisfy the constraints of (OC) with aε and â respectively, then η := mε− m̂
solves 

∂ηj
∂t

(t, x) =
1

2
Tr
[
σTσ(t, x)∇2ηj(t, x)

]
−∇ · (b(t, x, âj(t, x))ηj(t, x) + κjε(t, x)),

ηj(0, x) = 0, j ∈ [[M ]],

where κjε := Dab(t, x, â
j(t, x))εajmε

j + o(εaj) is a remainder that will cancel
out in the end. Let ϕε(t, x, p) := ϕ(t, x, aε,m

ε, p) for ϕ ∈ {f, g,H} and define
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ϕ̂ in the same way using â. Note that

f ε(t, x)− f̂(t, x) = Hε(t, x, p)− Ĥ(t, x, p)

−
M∑
j=1

(
b(t, x, âj(t, x))ηj(t, x) + κjε(t, x)

)
· ∇pj(t, x)

and by symmetry of φr,∫
Rd
Gφr [m̂](t, x)Λ̄η(t, x)dx =

∫
Rd
Gφr [η](t, x)Λ̄T m̂(t, x)dx. (15)

By the convexity assumption on H,

Jr,Λ̄(aε)− Jr,Λ̄(â)

=

∫
Rd

∫ T

0
f ε(t, x)− f̂(t, x)dtdx+

∫
Rd
gε(x)− ĝ(x)dx

≥
∫
Rd

∫ T

0

{
DmĤ[η](t, x, p) +

M∑
j=1

DajĤ(t, x, p) · (ajε(t, x)− âj(t, x))

−
M∑
j=1

(
b(t, x, âj(t, x))ηj(t, x) + κjε(t, x)

)
· ∇pj(t, x)

}
dtdx

+

∫
Rd

Ψ(x) · η(T, x)dx.

By a variation argument, the m-derivative of Ĥ is found to be

DmĤ[η](t, x, p) =
1

2
|â(t, x)|2 · η(t, x) +Gφr [m̂]T (t, x)Λ̄η(t, x)

+ Gφr [η]T (t, x)Λ̄m̂(t, x) +
M∑
j=1

b(t, x, âj(t, x))ηj(t, x) · ∇pj(t, x).

The a-derivatives of Ĥ vanish by the optimality condition (14). Hence, using
(15),

Jr,Λ̄(aε)− Jr,Λ̄(â)

≥
∫ T

0

∫
Rd

{
1

2
|â(t, x)|2 +Gφr [m̂]T (t, x)(Λ̄ + Λ̄T ) +

1

2
Tr
[
σσT∇2p(t, x)

]
+ (â1(t, x) · ∇p1(t, x), . . . , âM (t, x) · ∇pM (t, x)) +

∂p

∂t
(t, x)

}
· η(t, x)dxdt.
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Applying the adjoint equation (12) now gives Jr,Λ̄(aε) − Jr,Λ̄(â) ≥ 0 for all
convex perturbations aε of â. In the case of a control sets A which is not
convex the proof can be carried out in similar fashion by replacing the convex
perturbation aε by a spike variation.

Note that if

âj(t, x) = −(Dab(t, x, a(t, x))|a=âj )∇pj(t, x) (16)

the optimality condition (14) is satisfied. In the case of linear dynamics,
(16) is the well-known solution âj(t, x) = −∇pj(t, x). No property of Λ̄
except boundedness in norm was used in the proof of the maximum principle.
The following proposition identifies all matrices Λ̄ such that the convexity
assumption (13) holds.

Proposition 21. Condition (13) holds if and only if∫
Rd

∫
Rd
φr(x− y)(m(t, y)−m′(t, y))T Λ̄(m(t, x)−m′(t, x))dydx ≥ 0,

for all densities m and m′ and t ∈ [0, T ]

Proof. The convexity of H in a is trivial. H is convex in m if∫
Rd
H(t, x, a, αm+ (1− α)m′, p)dx

≤ α
∫
Rd
H(t, x, a,m, p)dx+ (1− α)

∫
Rd
H(t, x, a,m′, p)dx.

The inequality above can be rearranged into

0 ≥ (α2 − α)

∫
Rd
Gφr [m̃](t, x)Λ̄m̃(t, x)dx

= (α2 − α)

∫
Rd

∫
Rd
φr(x− y)m̃(t, x)T Λ̄m̃(t, x)dydx,

where m̃ := m−m′. The fact that (α2 − α) < 0 concludes the proof.

The opposite direction of Proposition 19 can now be proven.

Proposition 22. If â solves dMFT-M, m̂ satisfies the constraints of (OC)
with control â and p satisfies the adjoint equation (12), then â solves (OC).
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Proof. The proof is found in Appendix A.6.2.

The local risk measure, introduced in Remark 18, will naturally yield
a different Hamiltonian and adjoint equation than above. Anyhow, results
analogous to Proposition 19, Theorem 20, and Proposition 22 hold for the
local case, and their proofs are carried out following the same steps as in the
nonlocal case. The most notable structural change is that in the local case,
H is convex if and only if Λ̄ is positive semidefinite.

A.5 Numerical example

With the following numerical example we want to illustrate the difference
between local and nonlocal crowd aversion. We consider the following simple
crowd model on the one-dimensional torus T,

min
a∈Ad

∫
T

∫ T

0

{
a2(t, x)

2
+ C

∫
T
φr(x− y)m(t, y)dy

}
m(t, x)dtdx

+

∫
T

Ψ(x)m(T, x)dx

s.t.
∂m

∂t
(t, x) =

1

2

∂2m

∂x2
(t, x)− ∂

∂x
(a(t, x)m(t, x)),

m(0, x) = m0(x).

(17)

To make the comparison we also consider the corresponding local crowd
aversion problem

min
a∈Ad

∫
T

∫ T

0

{
a2(t, x)

2
+ Cm(t, x)

}
m(t, x)dt+ Ψ(x)m(T, x)dx

s.t.
∂m

∂t
(t, x) =

1

2

∂2m

∂x2
(t, x)− ∂

∂x
(a(t, x)m(t, x)),

m(0, x) = m0(x).

(18)

The constraint in (17) and (18) corresponds to the dynamics of a pedestrian
that controls her velocity but is disturbed by Brownian noise,

dXt = a(t,Xt)dt+ dWt.

The constant C has been introduced to reweigh the contribution of crowd
aversion. By up-weighting this term, emphasis is given to the impact of the
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preference, local or nonlocal, and the difference between the two crowds will
be more clear. To solve (17) and (18) the gradient decent method (GDM)
of [15] is used.

A.5.1 Simulations and discussions

We let T = 1 and C = 500, and m0 and φr are set to the functions presented
in Figure 1. Most pedestrians are initially gathered around x = 0 and they
have an incentive to end up around x = 0.5 at time t = 1. The personal
space of a pedestrian is modeled as

φ̂0.2(x) := 5I[0, .2](x).

In the calculations, φ̂0.2 is smoothed with a mollifier (cf. (4)). Note that∫
T
φ̂0.2(x− y)m(t, y)dy = 5P (x−Xt ∈ [0, 0.2]) ,

The use of an indicator to model the personal space thus has the follow-
ing interpretation: the pedestrian acting under nonlocal crowd aversion is
affected by the probability of other pedestrians being closer than 0.2 to her.

The optimal controls for (17) and (18) are found by the GDM-scheme of
[15]. The convergence of the risk is presented in Figure 2. In Figure 3, a
comparison between the solutions of (17) and (18) is displayed. The crowds
behave similarly until time begins to approach t = 1. The crowd acting under
nonlocal crowd aversion then gathers more densely in the low cost area. Since
the crowding experienced by a pedestrian in the nonlocal model is an average
over a larger neighborhood, she cares less about pointwise high densities and
the benefits of reaching the low cost area around x = 0.5 has a stronger
impact in the nonlocal model, resulting in a more concentrated density. This
is visualized in Figure 4, where on the left the difference between crowd
aversion penalties,∫

T
φ̂0.2(x− y)mnon-local(t, y)dy −mlocal(t, x),

is plotted. On the right plot, we display

mnon-local(t, x)−mlocal(t, x).

Note that even though the densities differ at t = 1, the two crowds experience
approximately the same amount of crowding at that time t = 1.
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Figure 1: The initial density and terminal cost used in the simulations.
Initially the pedestrians are crowded around x = 0 but they will quickly
flatten the density to heed their crowd aversion preferences. The low cost
around x = 0.5 will give the pedestrians an incentive to end up around this
part of the domain at t = 1.
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Figure 2: In each iteration of the GDM the control function a is updated.
The method is run until the risk measure, under local (dashed line) and
nonlocal (solid line) crowd aversion, has converged to a minimum.
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Figure 3: The optimally controlled density under local (dashed) and nonlocal
(solid) crowd aversion at six instants.
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Figure 4: Differences between the two crowd models. Left: Nonlocal minus
local crowd aversion penalty. Right: Nonlocal minus local density.
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A.6 Appendix

A.6.1 Proof of Proposition 19

The proof extends the results in [15] to an arbitrary finite number of crowds
and to nonlocal crowd aversion.

Proof. Let the entries in Λ̄ be denoted by λ̄jk. For each j ∈ [[M ]],

Jr,Λ̄(a)− J j,det
r,Λ (aj , a−j)

=
∑
k 6=j

(∫
Rd

∫ T

0

1

2
|ak(t, x)|2mk(t, x)dtdx+

∫
Rd

Ψk(x)mk(T, x)dx

)

+
M∑

k,l=1

(∫
Rd

∫ T

0
Gφr [mk]

T λ̄klmldtdx

)

−
M∑
k=1

(∫
Rd

∫ T

0
Gφr [mk]

Tλkjmjdtdx

)
.

(19)

Note that by symmetry of φ, the indices of Gφ[mk] and ml may be swapped
under the integral sign and the last two lines of (19) can be rewritten as

M∑
k,l=1
l,k 6=j

(∫
Rd

∫ T

0
Gφr [mk]

T λ̄klmldtdx

)

+

∫
Rd

∫ T

0

M∑
k=1
k 6=j

(
Gφr [mk]

T (λ̄kj + λjk − λkj)mj

)
+Gφr [mj ]

T (λ̄jj − λjj)mjdtdx.

The last two lines of the last equation vanish since Λ = Λ̄+Λ̄T −diag(Λ̄) and
Jr,Λ̄(a)− J j,det

r,Λ (aj , a−j) is independent of (aj ,mj). Therefore the optimality
of â implies that

J j,det
r,Λ (â) ≤ J j,det

r,Λ (aj , â−j), ∀ aj ∈ Ad, j ∈ [[M ]]. (20)

Since (20) holds for all j ∈ [[M ]], â is a solution to dMFT-M.
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A.6.2 Proof of Proposition 22

This proof is a variation of [14, Proposition 4.2.1] and extends it to an
arbitrary finite number of crowds and to nonlocal crowd aversion.

Proof. Let, for a given ε > 0, ajε be the first order perturbation of âj for
some arbitrary wj such that

ajε(t, x) := âj(t, x) + εwj(t, x) ∈ Ad.

Let mε
j satisfy the constraints in (OC) with ajε and let

mε
j(t, x) := m̂j(t, x) + εhεj(t, x) +O(hεj

2).

Then hεj satisfies the equation

∂hεj
∂t

(t, x) =
1

2
Tr
[
∇2(σσThεj)(t, x)

]
−∇ ·

(
b(t, x, âj(t, x))hεj(t, x)

)
−∇ ·

(
b(t, x, ajε(t, x))− b(t, x, âj(t, x)

ε
mε
j(t, x))

)
,

hεj(0, x) = 0.

(21)

Let J j : ε→ J j,det
r,Λ (ajε , â−j). Since the functional is convex, â solves dMFT-

M if and only if

∂J jr,Λ
∂ε

(0) = 0, ∀wj such that âj + εwj ∈ Ad, ∀ j ∈ [[M ]]. (22)

Condition (22) is equivalent to

0 =

∫
Rd

[∫ T

0

{
âj(t, x)m̂j(t, x) · wj(t, x) +

1

2
|âj(t, x)|2h0

j (t, x)

+ 2λjj

(∫
Rd
φr(x− y)m̂j(t, y)dy

)
h0
j (t, x)

+

M∑
k=1
k 6=j

λjk

(∫
Rd
φr(x− y)m̂k(t, y)dy

)
h0
k(t, x)

}
dt+ Ψj(x)h0

j (T, x)

]
dx

(23)
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where h0
j is the solution of (21) in the limit ε → 0. Since p satisfies the

adjoint equation, Ψj(x) = pj(T, x) and∫
Rd
pj(T, x)h0

j (T, x)dx

=

∫
Rd

∫ T

0

{
− 1

2
|aj(t, x)|2 − 2λjj

(∫
Rd
φr(x− y)m̂j(t, y)dy

)

−
M∑
k 6=j

λjk

(∫
Rd
φr(x− y)m̂k(t, y)dy

)
− b(t, x, âj(t, x)) · ∇pj(t, x)

− 1

2
Tr
[
σσT∇2pj(t, x)

]}
h0
j (t, x)

+

{
1

2
Tr
[
∇2(σσTh0

j )(t, x)
]
−∇ ·

(
b(t, x, âj(t, x))h0

j (t, x)
)

−∇ ·
(
Dajb(t, x, â

j(t, x))wj(t, x)m̂j(t, x)
)}

pj(t, x)dtdx.

(24)

Inserting (24) into (23) yields∫
Rd

∫ T

0

(
âj(t, x) +Dajb(t, x, â

j(t, x))T∇pj(t, x)
)
· wj(t, x)m̂j(t, x)dxdt = 0.

The last equation holds for all j ∈ [[M ]] so â satisfies the optimality condition
in Theorem 20 and therefore â is a solution to (OC) by Theorem 20.
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Abstract

This paper suggests a model for the motion of tagged pedestrians:
pedestrians moving towards a specified targeted destination, which
they are forced to reach. It aims to be a decision-making tool for
the positioning of fire fighters, security personnel and other services
in a pedestrian environment. Taking interaction with the surround-
ing crowd into account leads to a differential nonzero-sum game model
where the tagged pedestrians compete with the surrounding crowd.
When deciding how to act, pedestrians consider crowd distribution-
dependent effects, like congestion and crowd aversion. Including such
effects in the parameters of the game makes it a mean-field type game.
The equilibrium control is characterized, and special cases are dis-
cussed. Behavior in the model is studied by numerical simulations.

Keywords: pedestrian dynamics, backward-forward stochastic differ-
ential equations, mean-field type games, congestion, crowd aversion,
evacuation planning
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B.1 Introduction

Tagged pedestrians are individuals that plan their motion from an unspecified
initial position in order to reach a specified target location in a certain time.
The model for tagged pedestrian motion proposed in this paper is based on
mean-field type game theory, and is a decision making tool for the positioning
of fire fighters, medical personnel, etc, during mass gatherings. The tagged’s
prime objective is the pre-set final destination which is considered essential
to reach; ending up in proximity of the final destination is not acceptable, it
has to be reached. This is in sharp contrast to the standard finite-horizon
models cited below, where pedestrians are penalized if their final position
deviates from a target position, such penalization is a ’soft’ constraint and
can be broken at a cost. The tagged’s initial position is chosen rationally.
Therefore, we are inclined to think of the tagged as external entities to be
deployed in the crowd. Where they (rationally) ought to be deployed is
subject to an offline calculation made by a coordinator: a central planner.
Besides tagged pedestrian motion, possible applications of the model include
cancer cell dynamics and smart medicine in the human body, and malware
propagation in a network, among other.

The central planner’s decision making is based on knowledge of the pedes-
trian distribution. As noted in [43], the pedestrian behavior in a dense crowd
is empirically random to some extent, likely due to the large number of ex-
ternal inputs. In a noisy environment, the central planner anticipates the
behavior of the crowd and predicts the tagged’s path to the target. As is
standard in the mean-field approach, pedestrian interaction is modeled as a
reactions to the state distribution of the crowd. This leads us to formulate
a mean-field type game based model, which in certain scenarios reduces to
an optimal control based model.

B.1.1 Related work

B.1.1.1 Optimal control and games of mean-field type

Rational pedestrian behavior is, in this paper, characterized by either a
game equilibrium, or an optimal control. The tool used to find the equilib-
rium/optimal behavior is Pontryagin’s stochastic maximum principle (SMP).
For stochastic control problems, the SMP yields, when available, necessary
conditions that must be satisfied by any optimal solution. The necessary con-
ditions become sufficient under additional convexity conditions. Early results
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show that an optimal control along with the corresponding optimal state tra-
jectory must solve the so-called Hamiltonian system, which is a two-point
(forward-backward) boundary value problem, together with a maximum con-
dition of the so-called Hamiltonian function (see [49] for a detailed account).
In stochastic differential games, both zero-sum and nonzero-sum, the SMP
is one of the main tools for obtaining conditions for an equilibrium, and was
essentially inherited from the theory of stochastic optimal control. For re-
cent examples of the use of the SMP in stochastic differential game theory,
see [41, 4].

In stochastic systems, the backward equation is fundamentally different
from the forward equation, if the solution is required to be adapted. An
adapted solution to a backward stochastic differential equation (BSDE) is
a pair of adapted stochastic processes (Y·, Z·), where Z· corrects any “non-
adaptedness” caused by the terminal condition of Y·. As pointed out in [36],
the first component Y· corresponds to the mean evolution of the dynamics,
and Z· to the risk between current time and terminal time. Linear BSDEs
extend to non-linear BSDEs [44] and backward-forward SDEs (BFSDE) [3,
29]. BSDEs with distribution-dependent coefficients, mean-field BSDEs, are
by now well-understood objects [11, 12]. Mean-field BFSDEs arise naturally
in the probabilistic analysis of mean-field games (MFG), mean-field type
games (MFTG) and optimal control of mean-field type equations.

The theory of optimal control of mean-field SDEs, initiated in [2], treats
stochastic control problems with coefficients dependent on the marginal
state-distribution. This theory is by now well developed for forward stochas-
tic dynamics, i.e., with initial conditions on state [10, 23, 14, 17]. With SMPs
for optimal control problems of mean-field type at hand, MFTG theory can
inherit these techniques, just like stochastic differential game theory does
in the mean-field free case. See [45] for a review of solution approaches to
MFTGs.

Optimal control of mean-field BSDEs has recently gained attention. In
[40] the mean-field LQ BSDE control problem with deterministic coefficients
is studied. Assuming the control space is linear, linear perturbation is used
to derive a stationarity condition which together with a mean-field BFSDE
system characterizes the optimal control. Other recent work on the control
of mean-field BSDEs makes use of the SMP approach of [48] to control of
BFSDEs.

Optimal control problems of mean-field type can be interpreted as large
population limits of cooperative games, where the players collaborate to
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optimize a joint objective [38]. A close relative to mean-field type con-
trol is MFG, a class of non-cooperative stochastic differential games, initi-
ated independently by [32] and [39]. Both mean-field type control problems
and MFGs approximate games between a large number of indistinguishable
(anonymous) players, interacting weakly through a mean-field coupling term.
Weak player-to-player interaction through the mean-field coupling restricts
the influence one player has on any other player to be inversely proportional
to the number of players, hence the level of influence of any specific player is
very small. In contrast to the MFG, players in a MFTG can be influential,
and distinguishable (non-anonymous). That is, state dynamics and/or cost
need not be of the same form over the whole player population, and a single
player can have a major influence on the other players’ dynamics and/or
cost.

B.1.1.2 Pedestrian crowd modeling

There is a variety of mathematical approaches to the modeling of pedestrian
crowd motion. Microscopic force-based models [27, 18], and in particular the
social force model, represent pedestrian behavior as a reaction to forces and
potentials, applied not only by the surrounding environment but also by the
pedestrian’s internal motivation and desire. A cellular automata approach to
the microscopic modeling of pedestrian crowds can be found in [15, 35, 34],
to mention only a few sources. Macroscopic models view the crowd as a
continuum, described by averaged quantities such as density and pressure.
The Hughes model [33, 31, 46] couples a conservation law, representing the
physics of the crowd, with an Eikonal equation modeling a common task
of the pedestrians. Its variations are manifold. Kinetic and other multi-
scale models [6, 20, 7] constitute an intermediate step between the micro-
and the macro scales. Microscopic game and optimal control models for
pedestrian crowd dynamics, with their relevant continuum limits in the form
of mean-field games and mean-field type optimal control, have gained interest
in the last decade. In [28], a simplified MFG was used to model the rational
behavior of a pedestrian in a crowd. Following Lasry and Lion’s paper on
MFG, [25] applied MFG to pedestrian crowd motion and [37] used MFG to
model local congestion effects, i.e. the relationship between energy needed to
walk/run and local crowd density. MFG based models have also been used
to simulate evacuation of pedestrians [24].

The mean-field approach rests on an exchangeability assumption; pedes-
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trians are anonymous, they may have different paths but one individual
cannot be distinguished from another. While interesting when modeling cir-
cumstances where pedestrians can be considered indistinguishable (e.g. a
train station during rush hour or fast exits of an area in case of an alarm)
there are situations where an anonymous crowd model is not satisfactory.
The mean-field type game is a tool to model distinguishable sub-crowds and
influential individuals, and has been applied in e.g. [5]. Other ways to break
the anonymity within the mean-field approach are multi-population MFGs
[26, 19, 1] and major agent models [30, and references therein].

Another important characteristic of standard MFGs and MFTGs is the
assumption of anticipative players. Each player is assumed to predict how the
whole population will act in the future, and then pick a strategy accordingly.
In a pedestrian crowd setting, this would correspond to pedestrians knowing,
most likely by experience, how the surrounding crowd will behave. This is a
very high ’level of rationality’, and certainly not appropriate in all scenarios.
We refer to [21] for a precise discussion on the level of rationality of pedestrian
crowd models, including mean-field games and optimal control of mean-field
type based models.

B.1.2 Paper contribution and outline

This paper investigates a new modeling approach to the motion of pedes-
trians whose primary objective is to reach a specific target, at a specific
time. The model can represent a large group that is steered by a central
planner, or a single individual. Even though these pedestrians have certain
non-standard goals, they are constrained by the same physical limitations
as ordinary pedestrians, and the central planner takes this into considera-
tion. Moreover, the central planner has access to complete information of
the surrounding environment, and utilizes it in the decision making process.

The contribution of this paper is a mean-field type game based model
for the motion of tagged pedestrians in a surrounding crowd of ’ordinary
pedestrians’. The players in the game are crowds, and act rationally under
general distribution-dependent dynamics and cost. The tagged pedestrians
have a ’hard’ terminal condition, while the ordinary pedestrians have a ’hard’
initial condition, and this results in a state equation in the form of a mean-
field BFSDE, representing i) the predicted motion of the tagged towards the
target, coupled with ii) the evolution of the surrounding crowd from a known
initial configuration.
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Rational behavior in the model is characterized with a version of the SMP,
tailored for our mean-field BFSDE with mean-field type costs. The central
section of this paper is the solved examples, where we illustrate pedestrian
behavior in the model. Further directions of research are also outlined.

The tagged pedestrian model is presented in Section B.2, which begins in
a deterministic setting, to which we gradually add components until the full
model is reached. The SMP that gives necessary and sufficient conditions for
equilibrium controls in the mean-field type game is presented in Theorem 2.
Examples of tagged motion are studied in Section B.3. All technical proofs
and background theory have been moved to the appendices.

B.2 The tagged pedestrian model

In this section the tagged pedestrian model is introduced. Velocity fields are
the driving components in the model and include both small-scale pedestrian
interactions and path planning components. The latter is implemented by
pedestrians in a rational way: a cost functional summarizing pedestrian
preferences is minimized. The former describes involuntary movement over
which the pedestrian has no control.

List of symbols

T ∈ (0,∞) the time horizon
(Ω,F ,F,P) the underlying filtered probability space
P(Rd) the space of probability measures on (Rd,B(Rd))
P2(Rd) all square-integrable measures in P(Rd)
L(X) ∈ P(Rk) the distribution of the random variable X ∈ Rk under P
X· the stochastic process {Xt; t ≥ 0}
L2
F (Rd) the space of F-measurable square-integrable Rd-valued ran-

dom variables

B.2.1 Pedestrian dynamics

In a deterministic setting the pedestrian state dynamics are described by
ordinary differential equations (ODE). An ordinary pedestrian is initiated
at some location x0 ∈ Rd, and moves according to an ODE with an initial
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condition, {
d
dtXt = bxt , t ∈ [0, T ],

X0 = x0.
(1)

The pedestrian influences her velocity through a control function, ux· . The
control is assumed to take values in the set Ux ⊂ Rdx , dx ≥ 1. Alongside the
control function, bxt may depend on the interaction with other pedestrians,
for example collisions. In the literature, the velocity is often split into a
behavioral velocity (the control) and an interaction velocity,

bxt = uxt + bx,int
t .

So, on top of any interaction velocity, the tagged influences her movement
through a control, and this grants her some smartness. As was discussed in
the introduction, the pedestrian may foresee crowd movement and act in ad-
vance to avoid congested areas and other obstacles. Pedestrian models that
consider the behavioral velocity to be an internal choice of the pedestrian
leaves the framework of classical particle models, they are decision-based
smart models. A summary of the difference between the model classes is
found in [43]. Alongside ordinary pedestrians, tagged pedestrians are de-
ployed. They represent a person on a mission, who has to reach a target
location yT ∈ Rd at time t = T . In the deterministic setting, the tagged
moves according to an ODE with terminal condition,{

d
dtYt = uyt + by,int

t , t ∈ [0, T ], uyt ∈ Uy ⊂ Rdy , dy ≥ 1,

YT = yT .
(2)

Just like ux· influences the terminal position of an ordinary pedestrian, so
does uy· influence the initial position of a tagged pedestrian. This should be
interpreted in the following way: the initial position of the tagged pedestrian
is not pre-determined, but depends on the pedestrian’s choice of behavioral
velocity. The choice is subject to the terminal condition, and at the same
time it reflects other preferences. For example, if there is a high risk of in-
jury at a certain location yT (doors, stairs, etc.), where is the best spot for
a medic to be positioned, so that she can reach yT in time T? Certainly not
at yT , since it is a high risk area. The medic’s initial location is preferably
a safe spot, from which it is easy for her to access yT , taking surrounding
pedestrians and environment into account. This is what should be reflected
in the choice of uy· .
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Pedestrian motion can be considered deterministic if the crowd is sparse,
but partially random if the crowd is dense. To capture this, (1)-(2) is ex-
tended to its stochastic counterpart. Let (Ω,F ,P) be a complete probability
space, endowed with the filtration F = (Ft)t≥0, satisfying the usual condi-
tions. Let the space carry Bx

· and By
· , independent wx- and wy-dimensional

F-Wiener processes, and a random variable yT ∈ L2
FT (Rd) independent of

B· := (Bx
· , B

y
· )
∗. The Brownian motion B· is split into Bx

· and By
· to em-

phasize modeling features: Bx
· is the noise that explicitly effects the ordinary

pedestrian’s diffusion, while By
· may be used to model any noise that in ad-

dition to Bx
· effects the tagged. All information in the model up to time t

is contained in Ft, and a process that depends only on past and current in-
formation is called an Ft-adapted process. It is natural to require pedestrian
motion to be adapted, since pedestrians react causally to the environment.
In this random environment, we consider a control to be feasible if it is open-
loop adapted and square integrable, i.e. belongs to the sets Ux and Uy for
ordinary and tagged pedestrians respectively,

Ux :=

{
u : Ω× [0, T ]→ Ux

∣∣ u· is F-adapted, E [∫ T

0
|us|2ds

]
<∞

}
,

Uy :=

{
u : Ω× [0, T ]→ Uy

∣∣ u· is F-adapted, E [∫ T

0
|us|2ds

]
<∞

}
.

(3)

As a demonstration of how randomness effects the tagged model, consider
the tagged dynamics with Brownian small-scale interactions and a random
terminal condition yT ∈ L2

FT (Rd),{
dYt = (uyt +By

t )dt, ∀ t ∈ [0, T ], uy· ∈ Uy,
YT = yT .

The naive solution Yt = yT −
∫ T
t (uys + By

s )ds is not Ft-adapted, it depends
on (By

s ; t ≤ s ≤ T )! On the other hand,

Yt = E
[
yT −

∫ T

t
uys +By

sds | Ft
]

(4)

is Ft-adapted. If Yt from (4) is square-integrable for all t ∈ [0, T ], which it is
in the current setup, the martingale representation theorem grants existence
of a unique square-integrable Rd×(wx+wy)-valued and Ft-adapted process Z·
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such that {
Yt −

∫ t
0 (uys +By

s )ds =
∫ t

0 ZsdBs, ∀t ∈ [0, T ],

YT = yT .
(5)

Equation (5) constitutes a BSDE. The conditional expectation (4) can be
interpreted as the L2-projection of the tagged’s future path onto currently
available information. Therefore, a practical interpretation of Z· is that it
is a supplementary control used by the tagged, to make her path to yT the
’best prediction’ at any instant in time. From a modeling point of view, the
tagged pedestrian thus uses two control processes:

• uy· - to heed preferences on initial position, speed, congestion and more.
It is the tagged’s subjective best response to the environment.

• Z· - to predict the best path to yT given uy· . It is a square-integrable
process, implicitly given by the martingale representation theorem.

Interaction between pedestrians at time t is introduced via the mean-
field of ordinary pedestrians, L(Xt) := P ◦ (Xt)

−1, and tagged pedestrians,
L(Yt). The distributions approximate the over-all behavior of the crowds
in the large population limit, under the assumption that within each of the
two groups individuals are indistinguishable (anonymous). This assumption
is in place throughout the paper. An example of a mean-field dependent
preference is the following: to safely accomplish its mission, a security team
prefers that no individual deviates too far away from the mean position of
the team. Also, effects like congestion, the extra effort needed when moving
in a high density area, and aversion, repulsion from other pedestrians, can
be captured with distribution dependent coefficients.

In a random environment, with mean-field interactions, we formulate
the dynamics of representative group members (ordinary and tagged) in the
model as 

dYt = by(t,Θy
t , Zt,Θ

x
t )dt+ ZtdBt,

dXt = bx(t,Θy
t , Zt,Θ

x
t )dt+ σx(t, θyt , Zt, θ

x
t )dBx

t ,

YT = yT , X0 = x0,

(6)

where Θy
t := (Yt,L(Yt), u

y
t ), θ

y
t := (Yt,L(Yt)) and

bx, by : Ω× [0, T ]× Rd × P(Rd)×Uy×Rd×(wx+wy)×Rd×P(Rd)×Ux→R,

σx : Ω× [0, T ]× Rd × P(Rd)× Rd×(wx+wy) × Rd × P(Rd)→ R.
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Θx
t and θxt are defined correspondingly. Distribution-dependence makes (6) a

so-called controlled mean-field BFSDE. Appendix B.5 summarizes results on
existence of unique solutions to mean-field BFSDEs and states assumptions
strong enough so that there exists a unique solution to (6) given any feasible
control pair (ux· , u

y
· ) ∈ Ux × Uy. The assumptions are in force throughout

this paper.

Remark 1. Fundamental diagrams, that describe the marginal relations be-
tween speed, density and flow in a crowd, are not necessary in the construc-
tion of bx and by, as functions of crowd density. It is pointed out in [21]
that the use of fundamental diagrams in pedestrian crowd models is an ar-
tifact from road traffic models, without proper justification in the case of
two-dimensional flows. Instead, the more natural (for the purpose of model-
ing pedestrian crowd motion) multidimensional velocity fields bx and by are
used here.

B.2.2 Pedestrian preferences

Modeling pedestrian preference is a delicate task. Not only is the gathering of
and the calibration to empirical data difficult for many reasons, but different
setups lead to vastly different mathematical formulations of rationality. The
focus in this paper is on setups where pedestrian groups are controlled by a
central planner. Other possible setups are discussed in Section B.4.

The ordinary and tagged pedestrians pay the cost fx and fy per time
unit, respectively,

fx, fy : Ω× [0, T ]×Rd×P(Rd)×Uy×Rd×(wx+wy)×Rd×P(Rd)×Ux → R.

On top of this, ordinary pedestrians pay a terminal cost hx at time T , and
tagged pedestrians pay an initial cost hy at time 0,

hx, hy : Ω× Rd × P(Rd)× Rd × P(Rd)→ R.

Given (ux· , u
y
· ), a pair of feasible controls, the total cost is Jx : Ux → R for

the ordinary pedestrian, and Jy : Uy → R for the tagged,

Jx(ux· ;u
y
· ) := E

[∫ T

0
fx(t,Θy, Zt,Θ

x
t )dt+ hx(θyT , θ

x
T )

]
,

Jy(uy· ;u
x
· ) := E

[∫ T

0
fy(t,Θy, Zt,Θ

x
t )dt+ hy(θy0 , θ

x
0 )

]
.
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B.2.2.1 The mean-field type game

Consider the following situation. Within each crowd, pedestrians cooperate,
but on a group-level, the crowds compete. This constitutes a so-called mean-
field type game between the crowds. A Nash equilibrium in the game is a
pair of feasible controls, (ûx· , û

y
· ) ∈ Ux × Uy, satisfying the inequalities{

Jx(u·; û
y
· ) ≥ Jx(ûx· ; û

y
· ), ∀u· ∈ Ux,

Jy(u·; û
x
· ) ≥ Jy(û

y
· ; û

x
· ), ∀u· ∈ Uy.

(7)

The next result is a Pontryagin’s type stochastic maximum principle, and
yields necessary and sufficient conditions for any control pair satisfying (7).
A proof is provided in Appendix B.7.

Theorem 2. Suppose that (ûx· , û
y
· ) is a Nash equilibrium, i.e. satisfies (7),

and let the regularity assumptions of Lemma 5 be in force. Denote the cor-
responding state processes, given by (6), by X̂· and (Ŷ·, Ẑ·) respectively. Let
(pxx· , q

xx
· , q

xy
· ), pxy· , pyy· and (pyx· , q

yx
· , q

yy
· ) solve the adjoint equations

dpxxt = −
{
∂xĤ

x
t + E

[
∗(∂µxĤ

x
t )
]}

dt+ qxxt dBx
t + qxyt dB

y
t ,

dpxyt = −
{
∂yĤ

x
t + E

[
∗(∂µyĤ

x
t

]}
dt− ∂zĤx

t dBt,

dpyyt = −
{
∂yĤ

y
t + E

[
∗(∂µyĤ

y
t )
]}

dt− ∂zĤy
t dBt,

dpyxt = −
{
∂xĤ

y
t + E

[
∗(∂µxĤ

y
t )
]}

dt+ qyxt dB
x
t + qyyt dB

y
t ,

pxxT = −
{
∂xĥ

x + E
[
∗(∂µx ĥ

x)
]}

, pxy0 = 0,

pyy0 = ∂yĥ
y + E

[
∗(∂µy ĥ

y)
]
, pyxT = 0,

(8)

where H i, i ∈ {x, y}, is the Hamiltonian, defined by

H i(ω, t, y, µy, v, z, x, µx, u, pix, piy, qix)

:=
∑

j∈{x,y}

bj(ω, t, y, µy, v, z, x, µx, u)pij

+ σx(ω, t, y, µy, x, µx)qix − f i(ω, t, y, µy, v, z, x, µx, u).

(9)

Then
ûxt = arg max

v∈Ux
Hx(t, Θ̂y

t , Ẑt, θ̂
x
t , v, p

xx
t , p

xy
t , q

xx
t ), a.e.-t, P-a.s.

ûyt = arg max
v∈Uy

Hy(t, θ̂yt , v, Ẑt, Θ̂
x
t , p

yx
t , p

yy
t , q

yx
t ), a.e.-t, P-a.s.

(10)
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If furthermore H i is concave in (y, µy, v, z, x, µx, u), and hi is convex in
(y, µy, x, µx, z), i ∈ {x, y}, then any feasible control pair satisfying (10) is a
Nash equilibrium in the mean-field type game.

Remark 3. Note that in the mean-field type game, the tagged can be thought
of as a major player, influencing the ordinary crowd. Furthermore, the cen-
tral planner has access to a model of the ordinary crowd and this is necessary
for the determination of the equilibrium control.

B.2.2.2 Optimal control of mean-field type

If the central planner does not have access to a model of the crowd of or-
dinary pedestrians, any interaction with the surrounding environment will
then enter the tagged model as a random signal. This is covered by the
(ω, t)-dependence of by and fy. The mean-field type game then reduces to a
so-called optimal control problem of mean-field type,

min
uy· ∈Uy

E
[∫ T

0
fy(t,Θy

t , Zt)dt+ hy(θy0 , Z0)

]
,

s.t. dYt = by(t,Θy
t , Zt)dt+ ZtdBt,

YT = yT .

(11)

Problem (11) is a special case of (7) and necessary and sufficient conditions
follow as a corollary to Theorem 2.

Corollary 4. Suppose that ûy· solves (11) and denote the corresponding
tagged state (Ŷ·, Ẑ·). Let p· solve the adjoint equation

dpt = −
{
∂yH(t, Θ̂y

t , Ẑt, pt) + E
[
∗
(
∂µH(t, Θ̂y

t , Ẑt, pt)
)]}

dt

− ∂zH(t, Θ̂y
t , Ẑt, pt)dBt,

p0 = ∂yh
y(θ̂y0) + E

[
∗
(
∂µh

y(θ̂y0)
)]
,

where H is the Hamiltonian

H(ω, t, y, µ, v, z, p) := by(ω, t, y, µ, v, z)p− fy(t, y, µ, v, z).

Then
ûyt = arg max

v∈Uy
H(t, θ̂yt , v, Ẑt, pt), a.e.-t, P-a.s. (12)
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If moreover H is concave in (y, µ, v, z) and that h is convex in (y, µ), then
any feasible ûy· that satisfies (12), almost surely for a.e. t, is an optimal
control to (11).

B.3 Simulations

This section is devoted to numerical simulations of the tagged model under
various external influences and internal preferences. First, two scenarios in
the optimal control version of the model are considered, including preferences
on velocity, avoidance and interaction via the mean position of the group.
Secondly, asymmetric bidirectional flow is simulated with the full mean-
field type game version of the model. None of the parameters used in the
simulations stem from real world measurements, but the velocity profiles
and the asymmetric bidirectional flow are compared qualitatively with the
experimental studies [42] and [50].

B.3.1 Optimal control: Keeping a tagged group together

In this scenario, the common goal of the tagged pedestrians is to stay close
to the mean position of the group, while conserving energy and initiating in
the proximity of y0 ∈ R2. Distance to the group mean is one of the simplest
mean-field effects that can be considered. Nonetheless it is a distribution-
dependent quantity, and the control problem characterizing tagged pedes-
trian behavior in this scenario is the nonstandard optimization problem (13).
The components of (13) are presented in Table 2. There is no surrounding
crowd present, only tagged pedestrians occupy the space.

min
u·∈U

1

2
E
[ ∫ T

0

(
λcont (uyt )

2
+ λattr (Yt − E[Yt])

2
)
dt

+ λinit(Y0 − y0)2

]
,

s.t. dYt = (uyt + λnoiseBt)dt+ ZtdBt,

YT = yT .

(13)

The scenario is simulated for two sets of parameters, see Table 3. The mean-
field BFSDE system of equations characterizing optimal behavior, given by
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Velocity component Form

Internal velocity (control) uy· ∈ Uy

Acceleration noise λnoiseB
y
·

Preference (penalty) Form

Energy usage per unit time λcont (uy· )
2

Distance from group mean per unit time λattr (Y· − E[Y·])
2

Distance from y0 ∈ R2 at t = 0 λinit(Y0 − y0)2

Table 2: Keeping a tagged group together: Components.

Corollary 4, is solved with the least-square Monte Carlo method of [9]. The
result is presented in Figure 1. The group walks approximately on the
straight line from the starting area to the target point. Remember that
the initial position of the tagged is chosen rationally by solving (13). There
is a trade-off between starting close to y0 and walking with high speed, and
the groups rationally initiates not at y0, but somewhere between y0 and yT .
The group that prefers proximity to other group members does indeed move
in a more compact formation. The difference is clearly seen when looking at
the mean distance to the center of the tagged group, see Figure 2.

λnoise λcont λattr λinit E[y0] yT T

Set 1 1 50 50 10 [0.1,0.1] [2,2] 1

Set 2 1 50 0 10 [0.1,0.1] [2,2] 1

Table 3: Keeping a tagged group together: Parameter values. Set 1 are
the parameters use in the scenario with distance-to-mean penalty, Set 2
without distance-to-mean penalty. The preferred initial position is normally
distributed around [0.1, 0.1].
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Figure 1: Top row: Crowd density evolution when λ2 = 50. Bottom row:
Crowd density evolution when λ2 = 0.

B.3.2 Optimal control: Desired velocity

Linear-quadratic scenarios have accessible closed form solutions. We want
to mention the case where the tagged’s goal is to move at her desired veloc-
ity vdes, similar to what was originally introduced as the desired speed and
direction in [27]. This scenario is an important special case, since desired
velocity is measurable in live experiments. See for example [42] for the speed
profile of pedestrian walking in a straight corridor, starting from standing
still. The scenario is formulated as standard optimal control problem, (14),
and the setting is summarized in Table 4.

min
u∈U [0,T ]

1

2
E
[ ∫ T

0

(
λcont (uyt )

2

+ λdes (uyt − vdes(t))
2

+ λrep(Yt −Q)2

)
dt

]
,

s.t. dYt = (uyt + λnoiseB
y
t )dt+ ZtdBt,

YT = yT .

(14)

In view of Corollary 4, the optimal control is

ûyt =
pt + λdesvdes(t)

λcont + λrep
,
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Figure 2: A tagged group acting under preferences with a penalty on the
distance to group center indeed moves in a more compact formation than a
group without the penalty.

With the ansatz Ŷt = γ(t)pt + η(t)By
t + θt, γ(T ) = η(T ) = 0 and θ(T ) = yT ,

a matching argument gives the optimally controlled dynamics up to a system
of ODEs:

d
dtγ(t) = −λrepγ(t)2 + 1

λcont+λdes
, γ(T ) = 0,

d
dtη(t) = −λrepγ(t)η(t) + λnoise, η(T ) = 0,
d
dtθ(t) = −λrepγ(t)(θ(t)−Q) + λdesv des(t)

λcont+λdes
, θ(T ) = yT ,

Ẑt = η(t).

In Figure 3, the simulated tagged crowd density is presented for two values
of Q. The desired velocity is set to be negative in both directions for t ∈
[0, T/2], and positive for t ∈ (T/2, T ], which corresponds to a preference to
first move south-west during the first half of the time period and then turn
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Velocity component Form

Internal velocity (control) uy· ∈ Uy
Acceleration noise λnoiseB

y
·

Preference Form

Energy usage per unit time λcont (uy· )
2

Uncomfortable velocity per unit time λdes (uy· − vdes(t))
2

Distance from Q ∈ R2 per unit time λrep(Y· −Q)2

Table 4: Desired velocity: Components

around and move north-east. The parameter λrep is set to a negative value,
hence the tagged prefers to avoid Q. The parameters used in the simulation
are summarized in Table 5. The trade-off between walking in the desired
velocity and walking close to the diamond Q before reaching the target circle
is clearly visible in the plot. Recall that the initial position is determined
by the optimization procedure. In this scenario, there is no preference on
initial position and the tagged group compensates for the location of Q by
changing its initial position!

In [42] the average time-dependent velocity of a pedestrian initially stand-
ing still is measured experimentally in the absence of interactions. The result
is a relationship between speed and time, than can be used as data for vdes.
Approximating the graph presented in [42] with

vdes(t) = max{0.1, arctan(πt− 1.6)}, (15)

the scenario is simulated with the two presented in Table 6. The result is
presented in Figure 4. The parameter set with a higher penalty on from
deviation from desired velocity naturally results in a velocity profile closer
to vdes(t).
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λnoise λcont λdes λrep

Set 1 0.5 0.5 1 -2

Set 2 0.5 0.5 1 -2

Q vdes(t) yT T

Set 1 −[0.5, 0.5] sign
(
t− T

2

)
[3, 3] [0.1, 0.1] 1

Set 2 [1.5, 1.5] sign
(
t− T

2

)
[3, 3] [0.1, 0.1] 1

Table 5: Desired velocity: Parameter values.

Figure 3: Top row: Desired velocity with Set 1 parameters from Table 5.
Bottom row: Desired velocity with Set 2 parameters from Table 5. The
tagged crowd moves first south-west and then north-east, following their
desired velocity, while avoiding the diamond on their way to the circle.

λnoise λcont λdes λrep Q vdes(t) yT T

Set 3 0.1 0.5 2 0 [0, 0] Eq. (15) [0, 0] 4

Set 4 0.1 0.5 10 0 [0, 0] Eq. (15) [0, 0] 4

Table 6: Desired velocity: Parameter values.
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0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

Mean velocity

Desired velocity

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

Mean velocity

Desired velocity

Figure 4: Left: Desired velocity with Set 3 parameters from Table 6. Right:
Desired velocity with Set 4 from Table 6. The mean velocity measured in
the scenario (14) compared to the desired velocity (15).

B.3.3 Mean-field type game: Asymmetric bidirectional flow

Consider now a scenario where ordinary pedestrians initiate at x0 ∈ R2,
close yT ∈ R2, the location of an incident. They begin to walk towards
the safe spot xT ∈ R2. A tagged pedestrian is to end up at the location
of the incident yT at time t = T . The tagged pedestrian is repelled by the
mean of the ordinary pedestrian crowd, while the ordinary pedestrian crowd
is repelled by the tagged pedestrian. This scenario is implemented as the
MFTG (16), summarized in Table 7.

Jx(ux· ;u
y
· ) =

1

2
E
[ ∫ T

0

(
λxcont (uxt )2 + λxrep(Xt − Yt)2

)
dt

+ λxterm(XT − xT )2

]
,

dXt = uxt dt+ σdBx
t , σ ∈ R, X0 = x0,

Jy(uy· ;u
x
· ) =

1

2
E
[ ∫ T

0

(
λycont (uyt )

2
+ λyred(Yt − E[Xt])

2
)
dt

+ λyinit(Y0 − y0)2

]
,

dYt = (uyt + λynoisedB
y
t ) + ZtdBt.

(16)
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ORDINARY PEDESTRIAN

Velocity component Form

Internal velocity (control) ux· ∈ Ux

Diffusion noise level σ

Preference Form

Energy usage per unit time λxcont (ux· )
2

Repulsion per unit time λxrep(X· − Y·)2

Proximity to xT at t = T λxterm(XT − xT )2

TAGGED PEDESTRIAN

Velocity component Form

Internal velocity (control) uy· ∈ Uy

Acceleration noise λynoiseB
y
·

Preference Form

Energy usage per unit time λycont (uy· )
2

Repulsion per unit time λyrep(Y· − E[X·])
2

Proximity to y0 at t = 0 λyinit(Y0 − y0)2

Table 7: Asymmetric bidirectional flow: Components

In Figure 5 and Figure 6 the scenario is simulated for the parameter sets
presented in Table 8. In Figure 5, the ordinary and the tagged do not have to
cross paths to go from their initial to their terminal positions. The simulated
paths (top plot of Figure 5) are similar in shape to both the outcome of the
corridor experiment under ’condition 3’ (no obstacle) of [42] and the BFR-
SSL experiment of [50]. These experimental studies were conducted in a
controlled environment that is outside the tagged pedestrian model of this
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paper. Anyhow, the tagged model replicates the separation of lanes in a
bidirectional pedestrian flow and the randomness that pedestrian motion
exhibits. The density snapshots (bottom row of Figure 5) reveal that in the
simulated scenario, the tagged moves at almost constant velocity towards
yT , while the ordinary group lingers a while at x0 before it starts to move
towards xT . In Figure 6, the tagged’s and the ordinary’s straight path from
initial position to target cross each other. In this scenario, the ordinary
pedestrians resolve this by taking walking in a half-circle around the tagged,
before moving towards their preferred terminal position xT .

TAGGED PED. λynoise λycont λyrep λyinit y0 E[yT ] T

Bidirectional flow 0.7 1 -2 3 [0,1] [10,0] 1

Twist 0.7 1 -1 3 [0,-3] [10,-1] 1

ORDINARY PED. σ λxcont λxrep λxend E[x0] xT T

Bidirectional flow 0.7 1 -1 10 [10,-1] [0,0] 1

Twist 0.7 1 -1.7 10 [10,-2] [0,0] 1

Table 8: Asymmetric bidirectional flow: Parameters values. The initial
and terminal constraints are normally distribution with mean tabled above,
and standard deviation 0.3 and 0.1 for the tagged and ordinary pedestrian,
respectively.

B.4 Concluding remarks and research perspectives

A mean-field type game model for so-called tagged pedestrian motion has
been presented and the reliability of the model has been studied through
simulations. To perform simulations, necessary and sufficient conditions for
a Nash equilibrium are provided in Theorem 2. The theorem is proven
under quite restrictive conditions on involved coefficient functions. However,
necessary conditions for a Nash equilibrium in similar games are available
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Figure 5: With parameter set ’Bidirectional flow’, Table 8. Top row: Pedes-
trian paths. Bottom row: Pedestrian density.
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Figure 6: With parameter set ’Twist’, Table 8. Top row: Pedestrian paths.
Bottom row: Pedestrian density.
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under less restrictive conditions and since our proof follows a standard path,
the conditions can certainly be relaxed. The model captures both game-like
and minor agent-type scenarios. In the latter, the tagged cannot effect crowd
movement while in the former, the tagged and the surrounding crowd have
conflicting interests, interact, and compete. The rational pedestrian behavior
in the competitive game-like scenario is to use an equilibrium strategy.

There are many variations to the mean-field type game approach. The
scenarios that have been considered in this paper fall into two rather ex-
treme categories; our pedestrians have acted under either basic or optimal
rationality. The terms are defined in [20]. When pedestrians neither have
access to information about their surroundings nor the ability to anticipate
crowd motion, the best they can do is to implement a control policy based
on their own position and their target position. This is a basic level of ra-
tionality. If the full model is available and pedestrians cooperate, they can
implement a control policy of optimal rationality. If the tagged can observe
crowd densities at each instant in time but not anticipate future crowd move-
ment, dynamic pedestrian preference may be modeled as a set of control
problems: for each τ ∈ [0, T ],

min
uy. (τ)∈Uyτ

E
[∫ T

τ
fy(t, Yt,L(Yτ ), uyt (τ))dt+ I{τ = 0}hy(Y0,L(Y0))

]
,

s.t. dYt = by(t, Yt,L(Yτ ), Zt, u
y
t (τ))dt+ ZtdBt,

YT = yT ,

where Uyτ is defined in the same way as Uy, but with the interval [0, T ]
replaced by [τ, T ], cf. (3). This is an intermediate level between basic and
optimal rationality. Pedestrian decision making can also be modeled as a
decentralized mechanism, i.e. instead of cooperating within the crowd, the
pedestrians compete in a game-like manner. Decentralized crowd formation
can be modeled as a MFG:

(i) Fix a deterministic function µ· : [0, T ]→ P2(Rd).

(ii) Solve the stochastic control problem
min
uy· ∈Uy

E
[∫ T

0
fy(t, Yt, µt, u

y
t )dt+ hy(Y0, µ0)

]
,

s.t. dYt = b(t, Yt, µt, Zt, u
y
t )dt+ ZtdBt,

YT = yT .
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(iii) Determine the function µ̂· : [0, T ] → P2(Rd) such that µ̂t is the
marginal law of the optimally controlled state from Step (ii).

Furthermore, minimal exit time (evacuation) problems can be posed at all
levels of rationality.

The numerical simulation of mean-field BFSDE systems has been done
either with the least-square Monte Carlo method of [8], or by a reduction to
a system of ODEs by the method of matching. The downside with the least-
square Monte Carlo method is that it is not clear which basis functions to use.
The matching method is feasible only for linear-quadratic problems. Other
simulation approaches include deep learning [47] and fixed-point schemes
[22]. Fast and stable numerical solvers for mean-field BFSDEs beyond the
linear-quadratic case is an area of research that would benefit many ap-
plied fields. In pedestrian crowd modeling, improved solvers would facilitate
simulation whenever effects like congestion, crowd aversion, and anisotropic
preferences are present.

B.5 Appendix 1: Mean-field BFSDE

Given a control pair (ux· , u
y
· ) ∈ Ux × Uy, systems of the form (6) have been

studied in the context of optimal control of mean-field type, where they nat-
urally arise as necessary optimality conditions. This appendix summarizes
some of the results on existence and uniqueness of solutions to MF-BFSDEs.
Let

H2,d :=

{
V· Rd-valued and prog. meas. : E

[∫ T

0
|Vs|2ds

]
<∞

}
,

S2,d :=

{
V· Rd-valued and prog. meas. : E

[
sup
s∈[0,T ]

|Vs|2
]
<∞

}
,

and recall that, in the case of a fixed control pair, bx and by are functions of

(ω, t, y, µy, z, x, µx) ∈ Ω× [0, T ]×Rd×P(Rd)×Rd×(wx+wy)×Rd×P(Rd),

and σx is a function of

(ω, y, µy, z, x, µx) ∈ Ω× Rd × P(Rd)× Rd×(wx+wy) × Rd × P(Rd).
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B.5.1 Quadratic-type constraints

For t ∈ [0, T ], µy, µx ∈ P2(Rd), x, x̄, y, ȳ ∈ Rd and z, z̄ ∈ Rd×(wx+wy), let

A(t, y, ȳ, µy, v, z, z̄, x, x̄, µx)

= (by(t, y, µy, v, z, x, µx)− by(t, ȳ, µy, v, z̄, x̄, µx)) · (y − ȳ)

+ (bx(t, y, µy, v, z, x, µx)− bx(t, ȳ, µy, v, z̄, x̄, µx)) · (x− x̄)

+ (σx(t, y, µy, z, x, µx)− σx(t, ȳ, µy, z̄, x̄, µx)) · (z − z̄).

In [22], the authors provide conditions on A under which, alongside stan-
dard assumptions, (6) has a unique solution (X·, Y·, Z·) in H2,d × H2,d ×
H2,d×(wx+wy) for all T .

B.5.2 Small time constraint

Under standard Lipschitz- and linear growth-conditions and for a nonde-
generate diffusion σx, (6) has a unique solution (X·, Y·, Z·) ∈ S2,d × S2,d ×
H2,d×(wx+wy) for small enough T by [17]. The bound on T depends on the
Lipschitz coefficients. In [17], the authors provide an example where unique-
ness fails.

B.6 Appendix 2: Differentiation of f : P2(Rd)→ R

The differentiation of functions taking probability measures is handled with
the lifting technique, introduced by P.-L. Lions and outlined in for example
[16, 13, 17]. Assume that the underlying probability space is rich enough, so
that for every µ ∈ P2(Rd) there is a random variable Y ∈ L2

F (Ω;Rd) such
that L(Y ) = µ. A probability space with this property is ([0, 1],B([0, 1]), dx).
Under this assumption, any function f : P2(Rd) → R induces a function
F : L2(Rd) → R so that F (Y ) := f(L(Y )). The Fréchet derivative of F at
Y , whenever it exists, is the continuous linear functional DF [Y ] that satisfies

F (Y ′)− F (Y ) = E
[
DF [Y ] · (Y ′ − Y )

]
+ o(‖Y ′ − Y ‖2)

for all Y ′ ∈ L2
F (Ω;Rd). Riesz’ Representation Theorem yields uniqueness

of DF [Y ]. Furthermore, there exists a Borel function ϕ[µ] : Rd → Rd,
independent of the version of Y , such that DF [Y ] = ϕ[L(Y )](Y ), see [16].
Therefore

f(L(Y ′))− f(L(Y )) = E
[
ϕ[Y ](Y )(Y ′ − Y )

]
+ o(‖Y ′ − Y ‖) (17)
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for all Y ′ ∈ L2
F (Ω;Rd). Denote ∂µf(µ;x) := ϕ[µ](x) for x ∈ Rd and let

∂µf(L(Y )) := ∂µf(L(Y );Y ). The following identity characterizes deriva-
tives with respect to elements in P2(Rd),

DF [Y ] = ϕ[L(Y )](Y ) = ∂µf(L(Y )).

Equation (17) is the Taylor approximation of a function over P2(Rd). Con-
sider now an f that besides the measure takes another argument, ξ. Then

f(ξ,L(Y ′))− f(ξ,L(Y )) = E
[
∂µf(ξ̃,L(Y );Y )(Y ′ − Y )

]
+ o(‖Y − Y ′‖2),

where the expectation is taken over non-tilded random variables. This is
abbreviated as

E
[
∂µf(ξ̃,L(Y );Y )(Y ′ − Y )

]
=: E

[
(∂µf(ξ,L(Y )))∗(Y ′ − Y )

]
. (18)

Note that L(Y ) is deterministic and the expectation is only taken over the
’directional argument’ of ∂µf , that is Y . Also, the expected value (18) is
stochastic, since it is not taken over ξ. Taking another expectation and
changing the order of integration yields

E
[
Ẽ
[
∂µf(ξ̃,L(Y );Y )

]
(Y ′ − Y )

]
,

where the tilded expectation is taken over tilded random variables. This is
abbreviated as

Ẽ
[
∂µf(ξ̃,L(Y );Y )

]
=: E [∗(∂µf(ξ,L(Y )))]

Example from Section B.3.1 The following measure derivative appears
in Section 3.1,

E

[
∗

(
∂µ

(
Yt −

∫
R2

yL(Yt)(dy)

)2
)]

.

Note that
(
Yt −

∫
R2 yL(Yt)(dy)

)2
= (Yt − E [M ])2 =: F (M) where M is

a random variable with law L(Yt). By the Taylor expansion, DF [M ] =
2(Yt − E [M ]) and therefore

E

[
∗

(
∂µ

(
Yt −

∫
R2

yL(Yt)(dy)

)2
)]

= E [2(Yt − E [M ])] = 0.
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B.7 Appendix 3: Proof of Theorem 2

Let ūx,ε· be a spike variation of ûx· ,

ūx,εt :=

{
ûxt , t ∈ [0, T ]\Eε,
ut, t ∈ Eε,

where u· ∈ Ux and Eε is a subset of [0, T ] of measure ε. Given the control
pair (ūx,ε· , ûy· ), denote the corresponding solution to the state equation (6)
by X̄ε

· and (Ȳ ε
· , Z̄

ε
· ). To ease notation, let for ϑ ∈ {bx, by, σx, fx, fy, hx, hy},

ϑ̄εt := ϑ(t, θ̄y,εt , ûyt , Z̄
ε
t , Θ̄

x,ε
t ), ϑ̂εt := ϑ(t, Θ̂y

t , Ẑt, Θ̂
x
t ),

δxϑ(t) := ϑ(t, Θ̂y
t , Ẑt, θ̂

x
t , ū

x,ε
t )− ϑ̂εt.

(19)

Consider the ordinary pedestrian’s potential loss, would she switch from the
equilibrium control ûx· to the perturbed ūx,ε· ,

Jx(ūx,ε· ; ûy· )− J(ûx· ; û
y
· ) = E

[∫ T

0

(
f̄x,εt − f̂xt

)
dt+ h̄x,εT − ĥ

x
T

]
.

A Taylor expansion of the terminal cost difference yields

E
[
h̄x,εT − ĥ

x
T

]
= E

[(
∂yĥ

x
t + E[∗(∂µĥ

x
T )]
)(

X̄ε
t − X̂t

)]
+ o

(
‖X̄ε

T − X̂T ‖2
)
,

Let X̃x
· and (Ỹ x

· , Z̃
x
· ) be the first order variation processes, solving the linear

BFSDE system

dX̃x
t =

{(
∂y b̂

x
t + E[∗(∂µy b̂

x
t )]
)
Ỹ x
t + ∂z b̂

x
t Z̃

x
t +

(
∂xb̂

x
t + E[∗(∂µx b̂

x
t )]
)
X̃x
t

+ δxb
x(t)1Eε(t)

}
dt +{

(∂yσ̂
x
t + E[∗(∂µy σ̂

x
t )]) Ỹ x

t + ∂zσ̂
x
t Z̃

x
t + (∂xσ̂

x
t + E[∗(∂µx σ̂

x
t )]) X̃x

t

}
dBx

t ,

dỸ x
t =

{(
∂y b̂

y
t + E[∗(∂µy b̂

y
t )]
)
Ỹ x
t + ∂z b̂

y
t Z̃

x
t +

(
∂xb̂

y
t + E[∗(∂µx b̂

y
t )]
)
X̃x
t

+ δxb
y(t)1Eε(t)

}
dt+ Z̃xt dBt,

X̃x
0 = 0, Ỹ x

T = 0.
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Lemma 5. Assume that bx are by are Lipschitz in the controls, that bx, by,
fx, fy, σx are differentiable at the equilibrium point almost surely for all t,
that their derivatives are bounded almost surely for all t, and that

∂xĥ
x + E

[
∗(∂µx ĥ

x)
]
∈ L2

FT (Rd), ∂yĥ
y + E

[
∗(∂µy ĥ

y)
]
∈ L2

F0
(Rd).

Then for some positive constant C,

sup
t∈[0,T ]

E
[
|X̃x

t |2 + |Ỹ x
t |2 +

∫ t

0
‖Z̃xs ‖F ds

]
≤ Cε2,

sup
t∈[0,T ]

E
[
|X̄ε

t − X̂t − X̃x
t |2 + |Ȳ ε

t − Ŷt − Ỹ x
t |2
]

+ sup
t∈[0,T ]

E
[∫ t

0
‖Z̄εs − Ẑs − Z̃xs ‖F ds

]
≤ Cε2.

Proof. The proof is a combination of standard estimates, see [49] for the
SDE terms and [4] for the BSDE terms.

The adjoint processes and the Hamiltonian, defined in (8) and (9) re-
spectively, yield together with Lemma 5 and integration by parts that

Jx(ūx,ε· ; ûy· )− J(ûx· ; û
y
· ) = E

[∫ T

0

{(
b̄x,εt − b̂xt

)
pxxt +

(
b̄y,εt − b̂

y
t

)
pxyt

+ (σ̄x,εt − σ̂xt ) qxxt −
(
H̄x,ε
t − Ĥx

t

)}
dt− pxxT X̃x

T

]
+ o(ε)

= E

[∫ T

0

{(
b̄x,εt − b̂xt

)
pxxt +

(
b̄y,εt − b̂

y
t

)
pxyt

+ (σ̄x,εt − σ̂xt ) qxxt −
(
H̄x,ε
t − Ĥx

t

)}
dt

−
∫ T

0
X̃x
t dp

xx
t −

∫ T

0
pxxt dX̃

x
t −

∫ T

0
d〈pxx· , X̃x

· 〉t

−
∫ T

0
Ỹ x
t dp

xy
t −

∫ T

0
pxyt dỸ

x
t −

∫ T

0
d〈pxy· , Ỹ x

· 〉t

]
+ o(ε)

= −E
[∫ T

0
δxH

x(t)1Eε(t)dt

]
+ o(ε),

(20)
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where H̄x,ε
t , Ĥx

t and δxHx(t) are defined in line with (19). The final equality
is retrieved by expanding all differences on the third row of (20), canceling
all but δxHx(t)1Eε(t) with the forth and fifth row, while making use of the
estimates from Lemma 5.

Consider now a spike variation of the tagged’s control,

ǔy,εt :=

{
ûyt , t ∈ [0, T ]\Eε,
ut, t ∈ Eε,

where u· ∈ Uy. Following the same lines of calculations as above, one finds
that if pyx· , pyy· are given by the adjoint equations (8) and the Hamiltonian
Hy by (9), then

Jy(ǔy,ε· ; ûx· )− Jy(ûy· ; ûx· ) = −E
[∫ T

0
δyH

y(t)1Eεdt

]
+ o(ε),

where δyHy(t) is defined in line with (19), for the spike perturbation ǔy,εt .
The rest of the proof is standard, and can be found in for example [49].
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Abstract

This paper introduces a system of stochastic differential equations
(SDE) of mean-field type that models pedestrian motion. The system
lets the pedestrians spend time at, and move along, walls, by means
of sticky boundaries and boundary diffusion. As an alternative to
Neumann-type boundary conditions, sticky boundaries and boundary
diffusion has a ’smoothing’ effect on pedestrian motion. When these
effects are active, the pedestrian paths are semimartingales with first-
variation part absolutely continuous with respect to the Lebesgue mea-
sure dt, rather than an increasing processes (which in general induces
a measure singular with respect to dt) as is the case under Neumann
boundary conditions. We show that the proposed mean-field model for
pedestrian motion admits a unique weak solution and that it is possible
to control the system in the weak sense, using a Pontryagin-type max-
imum principle. We also relate the mean-field type control problem
to the social cost minimization in an interacting particle system. We
study the novel model features numerically and we confirm empirical
findings on pedestrian crowd motion in congested corridors.

Keywords: pedestrian crowd modeling, mean-field type control, sticky
boundary conditions, boundary diffusion
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C.1 Introduction

Models for pedestrian motion in confined domains must consider interaction
with solid obstacles such as pillars and walls. The pedestrian response to
a restriction of movement has been included into crowd models either as
boundary conditions or repulsive forces. Up until today, the Neumann con-
dition and its variants (e.g. no-flux) have been especially popular among the
boundary conditions. The Neumann condition suffers from a drawback re-
lated to its microscopic (pathwise) interpretation. A Neumann condition on
the crowd density corresponds to pedestrian paths reflecting in the bound-
ary. In reality, pedestrians do not bounce off walls in the manner of classical
Newtonian particles, but their movement is slowed down by the impact and
a positive amount of time is needed to choose a new direction of motion. It
is natural to think that whenever a pedestrian is forced (or decides) to make
contact with a wall, she stays there for some time. During this time, she can
move and interact with other pedestrians, before re-entering the interior of
the domain.

C.1.1 Mathematical modeling of pedestrian-wall interaction

Today there is more than one conventional approach to the mathematical
modeling of pedestrian motion. This section aims to summarize how they
incorporate the interaction between pedestrians and walls.

Microscopic force-based models, among which the social force model has
gained the most attention, describes pedestrians as Newton-like particles.
From the initial work [30] and onward, the influence a wall has on the pedes-
trian is modeled as a repulsive force. The shape of the corresponding po-
tential has been studied experimentally, for example in [40]. The cellular
automata is another widely used microscopic approach to pedestrian crowd
modeling. Walls are modeled as cells to which pedestrians cannot transition,
already the original work [37] considers this viewpoint. In the continuum lim-
its of cellular automata, as for example in [10, 14], boundary conditions are
often set to no-flux conditions of the same type as (1) below.

The focus of macroscopic models is the global pedestrian density, either
in a stationary or a dynamic regime. Inspired by fluid dynamics [33] treats
the crowd as a ’thinking fluid’ that moves at maximum speed towards a
target location while taking environmental factors into account, such as the
congestion of the crowd. In this category of models, boundary conditions at
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impenetrable walls are most often implemented as Neumann conditions for
the pedestrian density. The pathwise interpretation of a Neumann boundary
condition is instantaneous reflection. A nonlocal projection of pedestrian ve-
locity in the normal and the tangential direction of the boundary respectively
is suggested in [6] and implemented in [7], allowing for nonlocal interaction
with boundaries.

Mean-field games and mean-field type control/games are macroscopic
models of rational pedestrians with the ability to anticipate crowd move-
ment, and adapt accordingly. These models can capture competition between
individuals as well as crowd/sub-crowd cooperation. In the mean-field ap-
proach to pedestrian crowd modeling pedestrian-to-pedestrian interaction is
assumed to be symmetric and weak, thus plausibly replaced by an interac-
tion with a mean field (typically a functional of the pedestrian density). One
of the most attractive features of the mean-field approach is that it connects
the macroscopic (pedestrian density) and the microscopic (pedestrian path)
point-of-view, typically through results on the near-optimality/equilibrium
of mean-field optimal controls/equilibria. The connection permits us to in-
fer individual pedestrian behavior from crowd density simulations, and vice
versa. In what follows, the crowd density is denoted by m. In [38], the den-
sity is subjected to n(x) · ∇m(t, x) = 0 at walls, where n(x) is the outward
normal at x. Under this constraint, the normal velocity of the pedestrian is
zero at any wall. Taking conservation of probability mass into account, [12]
derives the following boundary condition

−n(x) · (∇m(t, x)−G(m)v(t, x)) = 0, (1)

where G(m)v is a general form of the pedestrian velocity. The constraint (1)
represents reflection at the boundary since in the corresponding microscopic
interpretation pedestrians make a classical Newtonian bounce whenever they
hit the boundary. The same type of constraint is used in [2]. The case of
several interacting populations in a bounded domain with reflecting bound-
aries has been studied in the stationary and dynamic case [17, 1, 5]. In these
papers, the crowd density at walls is constrained by

n(x) · (∇m(t, x) +m(t, x)∂pH(x,∇u)) = 0.

The constraint is a reflection and the term −∂pH(x,∇u) is the velocity of
pedestrians that use the mean-field equilibrium strategy.
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C.1.2 Sticky reflected stochastic differential equations

The sticky reflected Brownian motion was discovered by Feller [23, 24, 25].
He studied the infinitesimal generator of strong Markov processes on [0,∞)
that behave like Brownian motion in (0,∞), and showed that it is possible
for the process to be ’sticky’ on the boundary, i.e. to sojourn at 0. So ’sticky
reflection’ was appended to the list of boundary conditions for diffusions,
which already included instantaneous reflection, absorption, and the elastic
Robin condition. Wentzell [44] extended the result to more general domains.

Itô and McKean [34] constructed sample paths to the one-dimensional
sticky reflected Brownian motion

dXt = 2µ1{Xt=0}dt+ 1{Xt>0}dWt, µ > 0, (2)

whose infinitesimal generator is the one studied by Feller. Skorokhod con-
jectured that the sticky reflected Brownian motion has no strong solution.
A proof that (2) has a unique weak solution can be found in for example [46,
IV.7].

Chitashvili published the technical report [15] in 1989 claiming a proof
of Skorokhod’s conjecture. Around that time, the process was studied by
several authors, e.g. [29, 26, 3, 47], to name a few. Warren [45] provided a
proof of Skorokhod’s conjecture in 1997 and in 2014 Engelbert and Peskir
[22] published a proof useful for further generalizations. The fact that the
system has no strong solution has consequences for how optimal control of
the system can be approached, as we will see in this paper.

Building on [22], interacting particle systems of sticky reflected Brownian
motions are considered in [27]. Interaction is introduced via a Girsanov
transformation. See [27, Sect. 3.2] for the construction. Under assumptions
on the ’shape’ of the interaction and integrability of the Girsanov kernel, the
interacting system is well-defined. Since the process no longer behaves like
a Brownian motion in the interior of the domain, it is now referred to as a
sticky reflected SDE. The boundary behavior is shown to be sticky in the
sense that the process spends a (dt-)positive time on the boundary.

Sticky reflected SDEs with boundary diffusion are considered in [28].
The paths defined by such a system are allowed to move on the (sufficiently
smooth) boundary ∂D of some bounded domain D ⊂ Rd. Under smoothness
conditions on ∂D, the authors show that this type of SDE has a unique weak
solution. Furthermore, an interacting system is studied, where interaction is
introduced via a Girsanov transformation.

122



Behavior near walls in the mean-field approach

C.1.3 Synopsis

In this paper, the sticky reflected SDE with boundary diffusion of [28] is pro-
posed as a model for pedestrian crowd motion in confined domains. We begin
by considering a (non-transformed) sticky reflected SDE with boundary dif-
fusion on D, a non-empty bounded subset of Rn with C2-smooth boundary
Γ := ∂D (see Section C.2.2, below) and outward normal n,

dXt = (1D(Xt) + 1Γ(Xt)π(Xt)) dBt − 1Γ(Xt)
1

2

(1

γ
+ κ(Xt)

)
n(Xt)dt, (3)

where π(Xt) is the projection onto the tangent space of Γ at Xt, κ(Xt) is
the mean curvature of Γ at Xt, and γ is a positive constant representing the
stickiness of Γ, cf. Remark 5 in Section E.2 below. All relevant technical
details can be found in Section C.2. Equation (3) admits a unique weak
solution P, but no strong solution. To control an equation that admits
only a weak solution is to control a probability measure on (Ω,F), under
which the state process X· := {Xt}t∈[0,T ] is interpreted as the coordinate
process Xt(ω) = ω(t). If all the admissible distributions of X· are absolutely
continuous with respect the reference measure P, then Girsanov’s theorem
can be used to implement the control. This corresponds to the case when the
drift of (3) is controlled. In the controlled diffusion case, admissible measures
are all singular with P and with one another (for different controls), and the
control problem is in fact a robustness problem over all admissible measures,
which led to the so-called second order backward SDE framework [42]. In
this paper we treat the case with controlled drift, the controlled diffusion
case will be treated elsewhere. A mean-field dependent drift β is introduced
into the coordinate process through the Girsanov transformation

dPu

dP

∣∣∣
Ft

= Lut := Et
(∫ ·

0
β (t,X·,Pu(t), ut)

∗ dBt

)
,

where Pu(t) := Pu ◦ X−1
t is the marginal distribution of Xt under Pu, β∗

denotes the transpose of β, and E is the Doléans-Dade exponential defined
for a continuous local martingale M as

Et(M) := exp

(
Mt −

1

2
〈M〉t

)
. (4)
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The path of a typical pedestrian in the interacting crowd is then (under Pu)
described by

dXt = 1D(Xt)
(
β (t,X·,Pu(t), ut) dt+ dBu

t

)
+ 1Γ(Xt)

(
π(Xt)β (t,X·,Pu(t), ut)−

n(Xt)

2γ

)
dt

+ 1Γ(Xt)dB
Γ,u
t ,

dBΓ,u
t = π(Xt)dB

u
t −

1

2
κ(Xt)n(Xt)dt,

(5)

where Bu is a Pu-Brownian motion. We provide a proof of the existence and
uniqueness of the controlled probability measure Pu based on a fixed-point
argument involving the total variation distance (cf. [20]).

Pedestrians are assumed to be cooperating and controlled by a rational
central planner. The central planner represents an authority that gives di-
rections to the crowd through signs, mobile devices, or security personnel,
and the crowd follows the instructions. This setup has been used to study
evacuation in for example [11, 13, 21]. For a discussion on the goals, the
degrees of cooperation, and the information structure in a pedestrian crowd,
see [18]. The central planner’s goal is to minimize the finite-horizon cost
functional

J(u) := Eu
[∫ T

0
f (t,X·,Pu(t), ut) dt+ g (XT ,Pu(T ))

]
, (6)

where f is the instantaneous cost and g is the terminal cost (see Section C.4
for conditions on the functions f and g). The minimization of (6) subject to
(5) is equivalent to the following mean-field type control problem, stated in
the strong sense in the original probability space with measure P, inf

u∈U
E

[∫ T

0
Lut f (t,X·,Pu(t), ut) dt+ LuT g (XT ,Pu(T ))

]
,

s.t. dLut = Lut β (t,X·,Pu(t), ut)
∗ dBt, L

u
0 = 1.

(7)

The validity of (7) is justified in Section C.4 below. Problem (7) is nowa-
days a standard mean-field type control problem and a stochastic maximum
principle yielding necessary conditions for an optimal control can be found
in [9]. Solving the general problem (7) with a Pontryagin-type maximum
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principle poses some practical difficulties, the main one being the necessity
of a second order adjoint process. However, most difficulties can be tackled
by imposing assumptions plausible for models of pedestrian crowd motion.
With the aim to replicate the pedestrian behavior observed in the empirical
studies [49] and [50], we consider a special case of (7) in Section C.5 where
ut takes values in a convex set and Pu(t) is replaced by Eu[r(Xt)], where the
function r : Rd → Rd can be different for each of the coefficients involved.

C.1.4 Paper contribution and outline

The main contribution of this paper is a new approach to boundary condi-
tions in pedestrian crowd modeling. The sticky reflected SDE of mean-field
type with boundary diffusion is proposed as an alternative to reflected SDEs
of mean-field type to model pedestrian paths in optimal-control based mod-
els. Sticky boundaries and boundary diffusion allows the pedestrian to spend
time and move along the boundary (walls, pillars, etc.), in contrast to mod-
els based on reflected SDEs where pedestrians are immediately reflected.
Existence and uniqueness of the mean-field type version of the sticky re-
flected SDE with boundary diffusion is treated. The model can be optimally
controlled (in the weak sense) and a Pontryagin-type stochastic maximum
principle is applied to derive necessary optimality conditions. Furthermore,
the mean-field type control problem has a microscopic interpretation in the
form of a system of interacting sticky reflected SDEs with boundary diffu-
sion. The new features of sticky boundaries and boundary diffusion yield
more flexibility when modeling pedestrian behavior at boundaries. A sce-
nario of unidirectional pedestrian flow in a long narrow corridor is studied
numerically to highlight these novel characteristics and to replicate experi-
mental findings as a first step in model validation.

The rest of the paper is organized as follows. Section C.2 defines no-
tation and summarizes relevant background theory. Section C.3 introduces
sticky reflected SDEs of mean-field type with boundary diffusion. Conditions
under which the equation has a unique weak solution are presented. In Sec-
tion C.4 the finite horizon optimal control of the state equation introduced
in Section C.3 is considered. In the uncontrolled case, the convergence on
an interacting (non-mean-field) particle system to the sticky reflected SDE
of mean-field type is proved. Finally, Section C.5 presents analytic examples
and numerical results based on the particle system approximation concerning
unidirectional flow in a long narrow corridor.
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C.2 Preliminaries

The domain D is a non-empty bounded subset of Rd with C2-smooth bound-
ary Γ := ∂D. The closure of D is denoted D̄. The Euclidean norm is denoted
| · |. A finite time horizon T > 0 is fixed throughout the paper. The path of
a stochastic process is denoted X· := {Xt}t∈[0,T ], and C is a generic positive
constant.

C.2.1 The coordinate process and probability metrics

Let (X , d) be a metric space. The set of Borel probability measures on X
is denoted by P(X ). By Pp(X ) ⊂ P(X ) we denote the set of all µ ∈ P(X )
such that (‖µ‖p)p :=

∫
d(y0, y)pµ(dy) <∞ for an arbitrary y0 ∈ X .

Let Ω := C([0, T ];Rd) be endowed with the metric |ω|T := supt∈[0,T ] |ω(t)|
for ω ∈ Ω. Denote by F the Borel σ-field over Ω. Given t ∈ [0, T ] and ω ∈ Ω,
put Xt(ω) = ω(t) and denote by F0

t := σ(Xs; s ≤ t) the filtration generated
by X·. X· is the so-called coordinate process. For any P ∈ P(Ω) (the set of
Borel probability measures on Ω) we denote by FP := (FPt ; t ∈ [0, T ]) the
completion of F0 := (F0

t ; t ∈ [0, T ]) with the P -null sets of Ω.
Let µ, ν ∈ P(Rd) and let B(Rd) be the Borel σ-algebra on Rd. The total

variation metric on (Rd,B(Rd)) is

dTV (µ, ν) := 2 sup
A∈B(Rd)

|µ(A)− ν(A)| .

On the filtration FP , where P ∈ P(Ω), the total variation metric between
m,m′ ∈ P(Ω) is

Dt(m,m
′) := 2 sup

A∈FPt

∣∣m(A)−m′(A)
∣∣ , 0 ≤ t ≤ T, ,

and satisfies Ds(m,m
′) ≤ Dt(m,m

′) for 0 ≤ s ≤ t. Consider the coordinate
process X·, then for m,m′ ∈ P(Ω),

dTV
(
m ◦X−1

t ,m′ ◦X−1
t

)
≤ Dt(m,m

′), 0 ≤ t ≤ T.

Endowed with the metric DT , P(Ω) is a complete metric space. The total
variation metric is connected to the Kullback-Leibler divergence through the
Csiszár-Kullback-Pinsker inequality,

D2
t (m,m

′) ≤ 2Em
[
log
(
dm/dm′

)]
, (8)

where Em denotes expectation with respect to m.

126



Behavior near walls in the mean-field approach

C.2.2 Boundary diffusion

In this subsection we introduce the boundary diffusion BΓ and review the
necessary parts of the background theory presented in [28, Sect. 2].

Definition 1. Γ is Lipschitz continuous (resp. Ck-smooth) if for every x ∈ Γ
there exists a neighborhood V ⊂ Rd of x such that Γ ∩ V is the graph of a
Lipschitz continuous (resp. Ck-smooth) function and D∩V is located on one
side of the graph, i.e., there exists new orthogonal coordinates (y1, . . . , yd)
given by an orthogonal map T , a reference point z ∈ Rd−1, real numbers
r, h > 0, and a Lipschitz continuous (resp. Ck-smooth) function ϕ : Rd−1 →
R such that

(i) V = {y ∈ Rd : |y−d − z| < r, |yd − ϕ(y−d)| < h}

(ii) D ∩ V = {y ∈ V : −h < yd − ϕ(y−d) < 0}

iii) Γ ∩ V = {y ∈ V : yd = ϕ(y−d)}

Definition 2. For y ∈ V , let

ñ(y) :=
(−∇ϕ(y−d), 1)√
|∇ϕ(y−d)|2 + 1

.

Let x ∈ Γ and T ∈ Rd×d be the orthogonal transformation from Definition 1.
Then the outward normal vector at x is defined by n(x) := T−1ñ(Tx).

Definition 3. Let x ∈ Γ and π(x) := E−n(x)n(x)∗ ∈ Rd×d, where E is the
identity matrix. π(x) is the orthogonal projection on the tangent space at x.

Note that for z ∈ Rd, π(x)z = z − (n(x), z)n(x).

Definition 4. Let f ∈ C1(D̄) and x ∈ Γ. Whenever Γ is sufficiently smooth
at x, ∇Γf(x) := π(x)∇f(x) and if f ∈ C2(D̄), ∆Γf(x) := Tr(∇2

Γf(x)). If
n is differentiable at x the mean curvature of Γ at x is

κ(x) := divΓn(x) = (π(x)∇) · n(x).

In [28] it is noted that whenever Γ is C2-smooth,

(π∇)∗ π = −κn.
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A Brownian motion BΓ
· on a smooth boundary Γ is a Γ-valued stochastic

process generated by 1
2∆Γ. This is in analogy with the standard Brown-

ian motion on Rd, in the sense that BΓ
· solves the martingale problem for

(1
2∆Γ, C

∞(Γ)). A solution to the Stratonovich SDE

dBΓ
t = π(BΓ

t ) ◦ dBt,

where B· is a standard Brownian motion on Rd, is a Brownian motion on
Γ [32, Chap. 3, Sect. 2]. By the Itô-Stratonovich transformation rule, the
Brownian motion on Γ solves

dBΓ
t = −1

2
κ(BΓ

t )n(BΓ
t )dt+ π(BΓ

t )dBt.

C.3 Sticky reflected SDEs of mean-field type with
boundary diffusion

In this section we provide conditions for the existence and uniqueness of a
weak solution to the sticky reflected SDE of mean-field type with boundary
diffusion. Consider the reflected sticky SDE with boundary diffusion,

dXt = −1Γ(Xt)
1

2

(
1

γ
+ κ(Xt)

)
n(Xt)dt

+ (1D(Xt) + 1Γ(Xt)π(Xt)) dBt,

X0 = x0 ∈ D̄,

(9)

which from now on will be written in short-hand notation as

dXt = a(Xt)dt+ σ(Xt)dBt, (10)

where a : [0, T ]×Rd → Rd and σ : [0, T ]×Rd → Rd×d are bounded functions
over [0, T ]× D̄, defined as

a(x) := −1Γ(x)
1

2

(
1

γ
+ κ(x)

)
n(x), σ(x) := 1D(x) + 1Γ(x)π(x).

By [28, Thm 3.9 & 3.17], (9) has a unique weak solution, i.e. there is a unique
probability measure P on (Ω,F) that solves the corresponding martingale
problem (cf. [35, Thm 18.7]), and the solution X· is C([0, T ]; D̄)-valued P-
a.s. The result [28, Thm 3.9] relies on some conditions, lets verify them
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for the sake of completeness. The weight functions α and β, introduced on
[28, pp. 6], are in (9) set to be everywhere constant and positive such that
α/β = 1/γ (cf. Remark 5, below). Condition 3.12 of [28] therefore holds: ∂D
is C2 and the constant positive weight functions have the required regularity.
This justifies the use of [28, Thm 3.9], and no further conditions are required
for [28, Thm 3.17]. To simplify notation, from now on through out the rest
of this paper let F denote the completion of F0 with the P-null sets of Ω, i.e.
F = (Ft; t ≥ 0) := FP.

Remark 5. The coordinate process is composed of three essential parts:

• Interior diffusion 1D(Xt)dBt;

• Boundary diffusion 1Γ(Xt)(π(Xt)dBt − 1
2(κn)(Xt)dt) = 1Γ(Xt)dB

Γ
t ;

• Normal sticky reflection −1Γ(Xt)
1

2γn(Xt)dt.

The constant γ is connected to the level of stickiness of the boundary Γ.
It also influences the invariant distribution of Xt. Let λ and s denote the
Lebesgue measure on Rd and the surface measure on Γ, respectively. Consider
the measure ρ := 1Dαλ + 1Γα

′s, α, α′ ∈ R. By choosing α = ᾱ/λ(D) and
α′ = (1 − ᾱ)/s(Γ), ᾱ ∈ [0, 1], ρ becomes a probability measure on Rd with
support in D̄ and ρ is in fact the invariant distribution of (9) whenever

1

γ
=

ᾱ

(1− ᾱ)

s(Γ)

λ(D)
.

Hence ᾱ→ 1 as γ → 0 and the invariant distribution of (9) concentrates on
the interior D. But as γ → ∞, it concentrates on the boundary Γ. We say
that the more probability mass that ρ locates on Γ, the stickier Γ is.

Next, we introduce mean-field interactions and a control process in (9)
through a Girsanov transformation.

Definition 6. Let the set of control values U be a subset of Rd. The set of
admissible controls is

U := {u : [0, T ]× Ω→ U | u F-prog. measurable} .

Let Q(t) := Q◦X−1
t denote the t-marginal distribution of the coordinate

process under Q ∈ P(Ω). Let β be a measurable function from [0, T ]× Ω×
P(Rd)× U into Rd such that:
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Assumption 1. For every Q ∈ P(Ω) and u ∈ U , (β(t,X·,Q(t), ut))t∈[0,T ]

is progressively measurable with respect to F, the completion of the filtration
generated by the coordinate process with the P-null sets of Ω.

Assumption 2. For every t ∈ [0, T ], ω ∈ Ω, u ∈ U , and µ ∈ P(Rd),

|β(t, ω, µ, u)| ≤ C
(

1 + |ω|T +

∫
Rd
|y|µ(dy)

)
.

Assumption 3. For every t ∈ [0, T ], ω ∈ Ω, u ∈ U , and µ, µ′ ∈ P(Rd),∣∣β (t, ω, µ, u)− β
(
t, ω, µ′, u

)∣∣ ≤ CdTV (µ, µ′).

Given Q ∈ P(Ω) and u ∈ U , let

Lu,Qt := Et
(∫ ·

0
β (s,X·,Q(s), us) dBs

)
, (11)

where E is the Doléans-Dade exponential (cf. (4)).

Lemma 7. The positive measure Pu,Q defined by dPu,Q = Lu,Qt dP on Ft
for all t ∈ [0, T ], is well-defined and is a probability measure on Ω. More-
over, Pu,Q ∈ Pp(Ω) for all p ∈ [1,∞) and under Pu,Q the coordinate process
satisfies

Xt = x0 +

∫ t

0

(
σ(Xs)β (s,X·,Q(s), us) + a(Xs)

)
ds+

∫ t

0
σ(Xs)dB

Q
s , (12)

where BQ is a standard Pu,Q-Brownian motion.

Proof. Assume that ϕ· is a process such that Pϕ, defined by dPϕ = Lϕt dP on
Ft where Lϕt := Et(

∫ ·
0 ϕsdBs), is a probability measure on Ω. By Girsanov’s

theorem, the coordinate process under Pϕ satisfies

dXt = (σ(Xt)ϕt + a(Xt)) dt+ σ(Xt)dB
ϕ
t ,

where Bϕ
· is a Pϕ-Brownian motion. The C2-smoothness of the boundary Γ

grants a bounded orthogonal projection onto the tangent space of Γ and a
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bounded mean curvature of Γ. By the Burkholder-Davis-Gundy inequality
we have for 1 ≤ p <∞

Eϕ
[
|X|pT

]
≤ Eϕ

[
C

(
|X0|p +

∫ T

0
|σ(Xs)ϕs|pds+

∫ T

0
|a(Xs)|pds

+

∣∣∣∣∫ ·
0
σ(Xs)dB

ϕ
s

∣∣∣∣p
T

)]

≤ C
(

1 +

∫ T

0
Eϕ[|ϕs|p]ds

)
,

where Eϕ denotes expectation taken under Pϕ. By Assumption 3 it holds
for every t ∈ [0, T ], ω ∈ Ω, µ ∈ P(Rd), and u ∈ U that

|β (t, ω, µ, u)| ≤ C
(
dTV (µ,P(t)) + |β (t, ω,P(t), u)|

)
. (13)

In view of (13), Assumption 2 and 3, and the fact that the total variation
between two probability measures is uniformly bounded, we have for all
t ∈ [0, T ],

|β(t,X·,Q(t), ut)| ≤ C (dTV (Q(t),P(t)) + |β(t,X·,P(t), ut)|)

≤ C
(

1 + |X|T +

∫
Rd
|y|P(t)(dy)

)
≤ C

(
sup{|y| : y ∈ D̄}

)
=: C̄ <∞, P-a.s.

(14)

The third inequality of (14) holds P-a.s. since under P, X· ∈ C
(
[0, T ]; D̄

)
almost surely. We note that (14) implies that Novikov’s condition is satisfied,

E

[
exp

(
1

2

∫ T

0
sup
s∈[0,t]

|β(s,X·,Q(s), us)|2dt

)]
≤ E

[
exp

(
TC̄2

2

)]
<∞,

where E denotes expectation with respect to P. Hence the Doléans-Dade
exponential defined in (11) is an (Ft,P)-martingale and Pu,Q is indeed a
probability measure, i.e. Pu,Q ∈ P(Ω). To show that Pu,Q ∈ Pp(Ω) for any
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p ∈ [1,∞), we simply note that

Eu,Q
[
|X|pT

]
= Eu,Q

[
|X|pT

(
1{X·∈C([0,T ];D̄)} + 1{X· /∈C([0,T ];D̄)}

)]
= E

[
LuT |X|

p
T

(
1{X·∈C([0,T ];D̄)} + 1{X· /∈C([0,T ];D̄)}

)]
≤ sup{|y|p : y ∈ D̄}E

[
LuT 1{X·∈C([0,T ];D̄)}

]
= sup{|y|p : y ∈ D̄}.

(15)

Finally, by Girsanov’s theorem the coordinate process under Pu,Q satisfies
(12).

For a given u ∈ U , consider the map

Φu : P(Ω) 3 Q 7→ Pu,Q ∈ P(Ω),

such that dPu,Q = Lut dP on Ft, where Lu is given by (11).

Proposition 8. The map Φu is well-defined and admits a unique fixed point
for all u ∈ U . Moreover, for every p ∈ [1,∞) the fixed point, denoted Pu,
belongs to Pp(Ω). In particular,

Eu
[
|X|pT

]
≤ sup

y∈D̄
|y|p,

where Eu denotes expectation with respect to Pu.

Proof. By Lemma 7, the mapping is well defined. We first show the contrac-
tion property of the map Φu in the complete metric space P(Ω), endowed
with the total variation distance DT . The proof is an adaptation of the
proof of [16, Thm. 8]. For each t ∈ [0, T ], let βQt := β(t,X·,Q(t), ut). Given
Q, Q̃ ∈ P(Ω), the Csiszár-Kullback-Pinsker inequality (8) and the fact that
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∫ ·
0(dBs − βQs ds) is a martingale under Φu(Q) = Pu,Q yields

D2
T

(
Φu(Q),Φu(Q̃)

)
≤ 2Eu,Q

[
log
(
LQ
T /L

Q̃
T

)]
= 2Eu,Q

[∫ T

0

(
βQs − βQ̃s

)
dBs −

1

2

∫ T

0

(
βQs

)2
−
(
βQ̃s

)2
ds

]
= 2Eu,Q

[∫ T

0

(
βQs − βQ̃s

)
βQs −

1

2

(
βQs

)2
+

1

2

(
βQ̃s

)2
ds

]
=

∫ T

0
Eu,Q

[(
βQs − βQ̃s

)2
]
ds

≤ C
∫ T

0
d2
TV

(
Q(s), Q̃(s)

)
ds ≤ C

∫ T

0
D2
s

(
Q, Q̃

)
ds.

Iterating the inequality, we obtain for every N ∈ N,

D2
T

(
ΦN
u (Q),ΦN

u (Q̃)
)
≤ CNTN

N !
D2
T

(
Q, Q̃

)
,

where ΦN
u denotes the N -fold composition of Φu. Hence ΦN

u is a contraction
for N large enough, thus admitting a unique fixed point, which is also the
unique fixed point for Φu. Under Pu, the fixed point of Φu, the coordinate
process satisfies

dXt = (σ(Xt)β (t,X·,Pu(t), ut) + a(Xt)) dt+ σ(Xt)dB
u
t ,

whereBu is a Pu-Brownian motion. Following the calculations from Lemma 7
that lead to (15), we get the estimate

(‖Pu‖p)
p = Eu

[
|X|pT

]
≤ sup

y∈D̄
|y|p,

where p ∈ [1,∞).

From now on, we will denote the Brownian motion corresponding to Pu
by Bu. To summarize this section, we have proved the following result under
Assumption 1-3.

Theorem 9. Given u ∈ U , there exists a unique weak solution to the sticky
reflected SDE of mean-field type with boundary diffusion

dXt = (σ(Xt)β (t,X·,Pu(t), ut) + a(Xt)) dt+ σ(Xt)dB
u
t . (16)

Under Pu the t-marginal distribution of X· is Pu(t) for t ∈ [0, T ] and X· is
almost surely C([0, T ]; D̄)-valued. Furthermore, Pu ∈ Pp(Ω).
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Proof. We are left to show that Pu
(
X· ∈ C([0, T ]; D̄)

)
= 1, all other state-

ments of the theorem have been proved. Since P(X· /∈ C([0, T ]; D̄) = 0,

Pu
(
X· /∈ C([0, T ]; D̄)

)
= E

[
LuT 1{X· /∈C([0,T ];D̄)}

]
= 0,

which proves that X· is Pu-almost surely C([0, T ]; D̄)-valued.

Remark 10. The drift component β is projected in the tangential direction
of the boundary by σ whenever the process is at the boundary (cf. (9)). The
drift component a is not effected by the transformation. From a modeling
perspective, the interpretation is that the pedestrian’s tangential movement
is partially controllable but also influenced by other pedestrians through the
mean field. The normal direction is an uncontrolled delayed reflection.

C.4 Mean-field type optimal control

Let Eu denote expectation taken under Pu. To apply the stochastic max-
imum principle of [8], we make the assumption that the mean-field type
Girsanov kernel β depends linearly on Pu.

Assumption 4. Let β̃ : [0, T ] × Ω × Rd × U → Rd and let rβ : Rd → Rd,
and assume that

β (t,X·,Pu(t), ut) = β̃ (t,X·, E
u [rβ(Xt)] , ut) .

With some abuse of notation, we will continue to denote the Girsanov
kernel by β, although from now this refers to β̃. Let f : [0, T ]×Ω×Rd×U →
R, g : Rd × Rd → R, rf : Rd → Rd, and rg : Rd → Rd.

Assumption 5. For every u ∈ U , the process (f(t,X·, E
u[rf (Xt)], ut))t is

progressively measurable with respect to F and (x, y) 7→ g(x, y) is Borel mea-
surable.

Consider the finite horizon mean-field type cost functional J : U → R,

J(u) := Eu
[∫ T

0
f (t,X·, E

u [rf (Xt)] , ut) dt+ g (XT , E
u [rg(XT )])

]
. (17)

The control problem considered in this section is the minimization of J with
respect to u ∈ U under the constraint that the coordinate process for any
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given u satisfies (16). The integration in (17) is with respect to a measure
absolutely continuous with respect to P. Changing measure, we get

J(u) = E

[ ∫ T

0
Lut f (t,X·, E[Lut rf (Xt)], ut) dt

+ LuT g (XT , E[LuT rg(XT )])

]
,

(18)

where E is the expectation taken under the original probability measure P
and Lu the controlled likelihood process, given by the SDE of mean-field
type

dLut = Lut β (t,X·, E [Lut rβ(Xt)] , ut)
∗ dBt, Lu0 = 1. (19)

C.4.1 Necessary optimality conditions

After making one final assumption about the regularity of β, f , and g (As-
sumption 6 below), the stochastic maximum principle yields necessary con-
ditions on an optimal control for the minimization of (18) subject to (19).
Assumption 4 and 6 are stated in their current form for the sake of technical,
not conceptual, simplicity and may be relaxed.

Assumption 6. The functions (t, x, y, u) 7→ (f, β)(t, x, y, u) and (x, y) 7→
g(x, y) are twice continuously differentiable with respect to y. Moreover,
β, f and g and all their derivatives up to second order with respect to y are
continuous in (y, u), and bounded.

The next result is a slight generalization of [8, Thm 2.1]. The paper [8]
treats an optimal control problem of mean-field type with deterministic co-
efficients. The approach of [8], which goes back to [41], extends without any
further conditions to include random coefficients, as shown in [31]. More-
over, in our case the coefficients are not bounded functions, they are linear
in the likelihood. This could seem to violate the conditions of [8, Thm 2.1],
but an application of Grönwall’s lemma yields E[(Lut )p] ≤ exp(C(p)t) for all
t ∈ [0, T ] and p ≥ 2, where C(p) is a bounded constant, and the estimates
of [8] can be recovered after an application of Hölder’s inequality.

Theorem 11. Assume that (û, Lû) solves the optimal control problem (18)-
(19). Then there are two pairs of F-adapted processes, (p, q) and (P,Q), that
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satisfy the first and second order adjoint equations
dpt = −

(
qtβ

û
t + E

[
qtL

û
t∇yβût

]
rβ(Xt)

− f ût − E
[
Lût∇yf ût

]
rf (Xt)

)
dt+ qtdBt,

pT = −gûT − E
[
LûT∇ygûT

]
rg(XT ),

dPt = −
( ∣∣∣βût + E

[
Lût∇yβût

]
rβ(Xt)

∣∣∣2 Pt
+ 2Qt

(
βût + E

[
Lût∇yβût

]
rβ(Xt)

))
dt+QtdBt,

PT = 0,

where ∇y denotes differentiation with respect to the Rd-valued argument.
Furthermore, (p, q) and (P,Q) satisfy

E

[
sup
t∈[0,T ]

|pt|2 +

∫ T

0
|qt|2dt

]
<∞, E

[
sup
t∈[0,T ]

|Pt|2 +

∫ T

0
|Qt|2dt

]
<∞,

and for every u ∈ U and a.e. t ∈ [0, T ], it holds P-a.s. that

H
(
Lût , u, pt, qt

)
−H

(
Lût , ût, pt, qt

)
+

1

2
[δ (Lβ) (t)]T Pt [δ (Lβ) (t)] ≤ 0, (20)

where H(Lut , ut, pt, qt):=Lut β
u
t qt−Lut fut and

δ(Lβ)(t) := Lût

(
β
(
t,X·, E[Lût rβ(Xt)], u

)
− βût

)
.

The following local form of the optimality condition (20) can be found in
e.g. [48, pp. 120], and will be useful for the computations in Section C.5. If
U is a convex set and H is differentiable with respect to u, then (20) implies

(u− ût)∗∇uH
(
Lût , ût, pt, qt

)
≤ 0, ∀ u ∈ U, a.e. t ∈ [0, T ], P-a.s. (21)

Remark 12. Sufficient conditions for weak optimal controls will seldom be
satisfied since they typically require the Hamiltonian to be convex (or concave)
in at least state (Lut ) and control (ut). This is false even for the simplest
version of our problem. Assume that β(t, ω, y, u) = u and f = 0, then
(`, u) 7→ H(`, u, p, q) = `uq, which is neither convex nor concave. However,
necessary optimality conditions can be useful as we will see in Section C.5.
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C.4.2 Microscopic interpretation of the mean-field type
control problem

In this section, we give a microscopic interpretation of the mean-field type
control problem (7) in the form of an interacting particle system (collabo-
ratively) minimizing the social cost. Our means will be the propagation of
chaos result [39, Thm. 2.6]. We will work under all the assumptions stated
so far, but we will use the notation from Section C.3 for β, f , and g.

We will fix a closed-loop control and we will assume that all the inter-
acting particles are using this control. This assumption is made in order to
extract the approximating property of any solution to the mean-field opti-
mal control problem that is on closed-loop form. In Section C.5, we will see
examples of such controls.

We introduce an interacting system of sticky reflected SDEs with bound-
ary diffusion. Each equation has an initial value with distribution λ, where
λ is a nonatomic measure and λ(D̄) = 1. See Remark 10 in [39] for the
necessity of the random initial condition.

Consider the measure P⊗N on (ΩN ,B(ΩN )), the weak solution to a sys-
tem of N ∈ N i.i.d. sticky reflected Brownian motions with boundary diffu-
sion

dXN,i
t = a(XN,i

t )dt+ σ(XN,i
t )dBi

t, XN,i
0 = ξN,i, i = 1, . . . , N,

where ξ1, . . . , ξN are random variables with law λ and B1, . . . , BN are inde-
pendent F-Wiener processes, all independent of each other. The functions
a and σ are defined as in (10). Given controls ui ∈ U (now F-progressively
measurable), i = 1, 2, . . . , define the likelihood process LN,iu,t as the solution
to

dLN,iu,t = LN,iu,t β
(
t,XN,i

· , µNt , u
i
t

)∗
dBi

t, LN,iu,0 = 1, i = 1, . . . , N,

where µN is the empirical measure of the coordinate processes,

µN :=
1

N

N∑
i=1

δXi
·
∈ P(Ω).

Then LNu,t :=
∏N
i=1 L

N,i
u,t is the Radon-Nikodym derivative for the Girsanov-

type change of measure from P⊗N to PN,u, under which the coordinate pro-
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cesses satisfy dXN,i
t =

(
a(XN,i

t ) + σ(XN,i
t )β

(
t,XN,i

· , µNt , u
i
t

))
dt+ σ(XN,i

t )dB̃i
t,

XN,i
0 = ξN,i, i = 1, . . . , N,

(22)

where B̃1, . . . are PN,u-Brownian motions and u := (u1, . . . , uN ). We note
that PN,u is the law of an interacting system of diffusion processes. The
social cost of the system (22) is defined as

1

N

N∑
i=1

J i(u) :=
1

N

N∑
i=1

EN,u
[∫ T

0
f(t,XN,i

· , µNt , u
i
t)dt+ g(Xi

T , µ
N
T )

]
.

The following theorem is an adaptation of [39, Thm. 2.6] where the drift
b := a+ σβ and the Girsanov kernel σ−1b := β.

Theorem 13. Let u ∈ U be a closed-loop control, i.e. ut(ω) = ϕ(ω·∧t) for
some measurable function ϕ : (Ω,F) → (U,B(U)). Given the control u and
a random variable ξ with law λ (nonatomic with support only on D̄), the
sticky reflected SDE of mean-field type with boundary diffusion{

dXt = (a(Xt) + σ(Xt)β(t,X·,Pu(t), ϕ(X·∧t))) dt+ σ(Xt)dBt,

X0 = ξ,

can be approximated by the interacting particle system (22) with all compo-
nents using the fixed closed-loop control u. Furthermore, the value of the
mean-field cost functional J at u is the asymptotic social cost of the interact-
ing particle system as N →∞ when all the XN,is are using the fixed control
u. More specifically,

lim
N→∞

DT

(
PN,u ◦ (XN,1

· , . . . , XN,k
· )−1, (Pu ◦X−1

· )⊗k
)

= 0, (23)

with u = (u, . . . , u), and

lim
N→∞

1

N

N∑
i=1

J i(u, . . . , u)→ J(u).

Proof. We denote by E(P(Ω)) the smallest σ-field on P(Ω) such that the
map µ 7→

∫
Ω φdµ is measurable for all bounded and measurable φ : Ω→ R.
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As pointed out in [39], E(P(Ω)) coincides with the Borel σ-field on P(Ω)
generated by the topology of weak convergence.

To verify the assumptions of [39, Thm. 2.6], we note that β is progres-
sively measurable with respect to F and that β is Lipschitz continuous in the
measure-valued argument with respect to dTV . This implies condition (E)
in [39], the E(P(Ω))-measurability of the function

Fs,t : P(Ω)→ R,

Fs,t(ν) =

∫
Ω

∫ t

s
|β(u, ω, νt)− β(u, ω,Pu(t))|2 du ν(dω),

the τ(Ω)-continuity of Fs,t, and the inequality (2.3) from [39, Thm. 2.6]. Fur-
thermore, β is bounded, implying condition (A) in [39]. So the propagation
of chaos (23) holds.

By [43, Prop. 2.2], the propagation of chaos implies that P(P(Ω)) 3
MN := PN,u ◦ (µN )−1 → δPu◦X−1

·
in the weak topology. By assumption, f

and g are bounded and continuous in the y-argument. Hence,

lim
N→∞

1

N

N∑
i=1

J i(u, . . . , u)

= lim
N→∞

1

N

N∑
i=1

EN,u
[∫ T

0
f
(
t,XN,i, µNt , ϕ(XN,i

·∧t )
)
dt+ g(XN,i

T , µNT )

]

= lim
N→∞

EN,u

[∫ T

0

∫
Ω
f
(
t, ω′, µNt , ϕ(ω′·∧t)

)
µN (dω′)dt

+

∫
Ω
g(ω′(T ), µNT )µN (dω′)

]

= lim
N→∞

∫ T

0

∫
P(Ω)

{∫
Ω
f

(
t, ω′,

∫
Ω
rf (ω′′(t))m(dω′′), ϕ(ω′·∧t)

)
m(dω′)

}
MN (dm)dt

+ lim
N→∞

∫
P(Ω)

∫
Ω
g

(
ω′(T ),

∫
Ω
rg(ω

′′(T ))m(dω′′)

)
m(dω′)MN (dm).

= Eu
[∫ T

0
f (t,X·,Pu(t)) dt+ g (XT ,Pu(T ))

]
= J(u).
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C.5 Examples

As a first step in model validation, experimental results on pedestrian speed
profiles in a long narrow corridor are replicated in this section. The ap-
plication of the proposed approach also displays the new features it offers
regarding behavior near walls. From the necessary optimality conditions we
derive an expression for the optimal control valid in the following two toy
examples and the corridor scenario. The numerical simulations are based on
the particle system approximation derived in Section C.4.2.

Throughout the rest of this section it is assumed that the set U is convex
and sufficiently large so that all the controls in the following analytical ex-
pressions are admissible. Furthermore, it is assumed that rg is differentiable
and that (û, Lû) is optimal for the mean-field type control problem (18)-(19).
We recall the first order adjoint equation,

dpt = −
(
qtβ

û
t + E

[
qtL

û
t∇yβût

]
rβ(Xt)

− f ût − E
[
Lût∇yf ût

]
rf (Xt)

)
dt+ qtdBt,

pT = −gûT − E
[
LûT∇ygûT

]
rg(XT ).

(24)

Rewriting E[Lût Yt] = Eû[Yt] and changing measure to Pû, (24) becomes dpt = −Atdt+ qtdB
û
t ,

pT = −gûT − Eû
[
∇ygûT

]
rg(XT ),

(25)

where At := Eû
[
qt∇yβût

]
rβ(Xt)−f ût −Eû

[
∇yf ût

]
rf (Xt). By the martingale

representation theorem (see e.g. [36, pp. 182]) p can be written as the
conditional expectation

pt = −Eû
[
gûT + Eû[∇ygûT ]rg(XT ) | Ft

]
+ Eû

[∫ T

t
Asds | Ft

]
. (26)

The theorem applies to our problem since g and its y-derivative are assumed
to be bounded. Let

φ (t,Xt) := g
(
Xt, E

û[rg(Xt)]
)

+ Eû[∇ygût ]rg(Xt).

By Dynkin’s formula,

Eû[φ(T,XT ) | Ft] = φ(t,Xt) +

∫ T

t
Eû [(G + ∂s)φ (s,Xs) | Ft] ds,
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where G is the generator of the coordinate process and ∂s denotes differen-
tiation with respect to time. Hence, by applying Itô’s formula on p in (26),
where only X· contributes to the diffusion part, and matching the diffusion
parts of that and p from (25), we get

qs = −∇xφ(s,Xs)σ(Xs). (27)

The local optimality condition in the case of a convex U and coefficients
differentiable in u, given in (21) right below Theorem 11, can be used to
write û in terms of the other processes. To use it, we make the following
assumption.

Assumption 7. The functions (t, x, y, u) 7→ (f, β)(t, x, y, u) are differen-
tiable with respect to u.

With Assumption 7 in force, an optimal control û satisfies the the local
optimality condition. The local optimality condition is satisfied by any û
such that ∇uH(Lût , ût, pt, qt) = 0 for almost every t ∈ [0, T ], P-a.s., i.e.

qt∇uβût = ∇uf ût , a.e. t ∈ [0, T ], P-a.s.. (28)

Since Pû is absolutely continuous with respect to P, the equality above also
holds for almost every t ∈ [0, T ] Pû-a.s. We have now at hand an expression
for the optimal control whenever we can solve (27)-(28) for û.

C.5.1 Linear-quadratic problems with convex U

C.5.1.1 A non-mean-field example

Let D ⊂ Rd be an admissible domain and P the probability measure on
the space of continuous paths under which the coordinate process solves (9).
Consider the following linear-quadratic optimal control problem on D,min

u∈U

1

2
E

[∫ T

0
Lut |ut|2dt+ LuT |XT − xT |2

]
,

s.t. dLut = Lut u
∗
tdBt, Lu0 = 1,

where B is a P-Brownian motion. The necessary optimality condition (28)
yields

ût = q∗t , P-a.s., a.e. t ∈ [0, T ].
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Matching the diffusion coefficients gives us the optimal control,

ût = −σ(Xt) (Xt − xT ) , P-a.s., a.e. t ∈ [0, T ].

The corresponding likelihood process solves

dLût = −Lût (Xt − xT )∗ σ(Xt)dBt, Lû0 = 1,

and under Pû, the optimally controlled path distribution, the coordinate
process solves

dXt = a(Xt)dt+ σ(Xt)dBt

= a(Xt)dt+ σ(Xt)
(
−σ(Xt) (Xt − xT ) dt+ dBû

t

)
= (a(Xt)− σ(Xt) (Xt − xT )) dt+ σ(Xt)dB

û
t .

We have used the fact that π2 = π = π∗, which holds since π is an orthogonal
projection.

C.5.1.2 A mean-field example

Consider now on some admissible domain D ⊂ Rd the mean-field type opti-
mal control problemmin

u∈U

1

2
E

[∫ T

0
Lut |ut|2dt+ LuT |XT − E [LuTXT ]|2

]
,

s.t. dLut = Lut u
∗
tdBt, Lu0 = 1.

As before, B is a P-Brownian motion, where P is a probability measure
on the path space under which the coordinate process solves (9). Then
Eû[∇ygût ] = 0, so (since rg(x) = x here)

∇xφ (t,Xt) =
(
Xt − Eû[Xt]

)∗
,

and (28) yields ût = −σ(Xt)(Xt−Eû[Xt]) P-a.s. for almost every t ∈ [0, T ].
Under Pû the coordinate process solves

dXt =
(
a(Xt)− σ(Xt)

(
Xt − Eû [Xt]

))
dt+ σ(Xt)dB

û
t .
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C.5.2 Unidirectional pedestrian motion in a corridor

Experimental studies have been conducted on the impact of proximity to
walls on pedestrian speed. Pedestrian speed profiles heavily depend on cir-
cumstances like location, weather, and congestion. In this section, we will
replicate two scenarios of unidirectional motion in a confined domain with
the proposed mean-field type optimal control model. Especially, we are in-
terested in how the proposed model behaves on the boundary and if bound-
ary movement characteristics can be influenced through the running cost f .
Sticky boundaries and boundary diffusion grants our pedestrians controlled
movement at the boundary. By altering the internal parameters of these
effect, we are able to shape the mean speed profile at the boundary.

Zanlungo et al. [49] observe that in a tunnel connecting a shopping
center with a railway station in Osaka, Japan, pedestrians tend to lower
their walking speed when walking close to the walls. The authors obtain a
concave cross-section average speed profile from their experiment, with its
maximum approximately at the center of the corridor. The average speed at
the center of the corridor is about 10% higher than that of near-wall walkers.

Daamen and Hoogendoorn [19] on the other hand observe (in a controlled
environment) pedestrian speeds that are higher at the boundary than in
the interior of the domain. In their experiment, a unidirectional stream of
pedestrians walk in a wide corridor that at a certain point, at a bottleneck,
shrinks into a tight corridor. Upstream from the bottleneck, pedestrians
close to the corridor walls move more freely due to less congestion, compared
to those at the center of the corridor. The experiment results in a cross-
section speed profile with more than twice as high average pedestrian speed
in the low-density regions along corridor walls compared to the center of the
corridor.

By modeling congestion with simple mean-dependent effects, we can
replicate the overall shape of the average speed profiles of both [49] and
[19] (not the density profile, to achieve this one needs a more sophisticated
mean-field model). Our reason for implementing only mean-dependent ef-
fects instead of nonlocal distribution-dependent effects (like those considered
in for example [4]) is solely to simplify the analysis.

Consider a long narrow corridor with walls parallel to the x-axis at y =
−0.1 and y = 0.1. Our analysis requires D to be C2-smooth, so the effective
corridor (the corridor perceived by the pedestrians) has rounded corners.
However, the corners will not have any substantial effect on the simulation
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results since the crowd is initiated so far away from the target that under
the chosen coefficient values, the pedestrians will not reach it ahead of the
time horizon T = 1. On this domain, crowd behavior is modeled with the
following optimal control problemmin

u·∈U

1

2
E

[∫ 1

0
Lut f (t,X·, E [Lut rf (Xt)] , ut) dt+ LuT |XT − xT |2

]
,

s.t. dLut = Lut utdBt, Lu0 = 1,

where B is a Brownian motion under P, the probability measure under which
X· solves (9) with γ = 0.5, and xT is the location of an exit at the end of
the corridor. The choice of γ is made so that the plots below are visually
comparable. The running cost f is of congestion-type,

f (t,X·, E [Lut rf (Xt)] , ut) = C(Xt)
(
cf + h (t,X·, E

u [rf (Xt)])
)
u2
t ,

where cf > 0 is a positive constant, cfu2 is the cost of moving in free space,
and hu2 the additional cost to move in congested areas. The coefficient
C(Xt) := cΓ1Γ(Xt) + 1D(Xt), cΓ > 0, is used to monitor f (though it is not
our control process) on the boundary Γ. The cost of moving on the boundary
is increasing with cΓ, so for high values of cΓ we expect a lower speed on the
boundary. We know from (28)-(27) that

q∗t = C(Xt)
(
cf + h

(
t,X·, E

û [rf (Xt)]
))

ût, qt = −(Xt − xT )∗σ(Xt). (29)

Matching the expressions in (29) yields the optimal control

ût =
σ(Xt) (Xt − xT )

C(Xt)
(
cf + h (t,X·, Eû [rf (Xt)])

) .
It implements the following strategy: move towards the target location xT ,
but scale the speed according to the local congestion. Consider the two
congestion penalties

h1 :=
∣∣∣X2(t)− Eû [X2(t)]

∣∣∣ , h2 :=
1

|X2(t)− Eû [X2(t)]|
, (30)

where X2(t) is the second (the y-)component of the coordinate process, i.e.
the component in the direction perpendicular to the corridor walls. Stickiness
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is set to γ = 0.5. The choice of h in (30) means that we have set rf (Xt) =
X2(t).

The corridor is split into 9 segments parallel with the corridor walls.
The mean speed is estimated in each segment for four different values of cΓ

and the results corresponding to congestion penalty h1 and h2 are presented
in Figure 1 and 2, respectively. The profiles plotted in Figure 1 attains the
concave shape observed by [49], mimicking the fast track in the middle of the
lane. In Figure 2 the profiles follow the convex shape observed by [19], taking
into account that movement in the crowded center (mean of the group) is
costly. When cΓ is small, the pedestrians can travel further on the boundary
for the same cost. Heuristically, the higher γ is the longer it takes for the
pedestrian to re-enter D and therefore a high γ combined with a small cΓ

yields the highest boundary speed. This effect is evident in the figures, where
smaller values of cΓ results in higher mean speed at the boundary. We note
that we are able to shape the mean speed at the boundary by our choice of
model parameters.

C.6 Conclusion and discussion

In this paper, we propose a to the best of our knowledge new variation of
the mean-field approach to crowd modeling based on sticky reflected SDEs.
The proposed model accounts for pedestrians that spend some time at the
boundary and have the possibility to choose a new direction of motion while
being on the boundary.

We provide conditions for the proposed model equations to admit a
unique weak solution, which is the best we can hope for (cf. [22]). Then,
we consider mean-field type optimal control of the proposed dynamic model
and give necessary conditions for optimality with a Pontryagin-type stochas-
tic maximum principle. There is a microscopic interpretation of the model
even on the boundary of the domain and thus it can be used to approximate
optimal (or equilibrium) behavior of a pedestrian crowd on a microscopic,
i.e. individual, level.

Pedestrians do often see and react to walls at a distance. This has been
studied empirically, some experiments are mentioned in the introduction.
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Figure 1: Mean speed in 9 segments of the corridor when h = h1 and cf = 1,
estimated from 4000 realizations of the controlled coordinate process.

Force-based models can implement repulsing potential forces spiking to in-
finity at boundaries to keep the pedestrians away from the walls and inside
the domain, effectively making it impossible for any pedestrian to reach a
wall. A ranged, nonlocal, interaction with walls will have a smoothing effect
on pedestrian density, just like nonlocal pedestrian-to-pedestrian interac-
tion has, as is noted in [4]. Nonlocal interaction is an important aspect of
pedestrian crowd modeling, but cannot give an answer to what will happen
whenever a pedestrian actually reaches a wall. Interaction with walls at a
distance can be included in our proposed model either in the drift, as is the
case in force-based models, or through the cost functional, as in agent-based
models.

An extension of the proposed framework would be to let the pedestrian
control her stickiness, i.e. her motion in the normal direction of the bound-
ary at the boundary. Stickiness is not necessarily a physical feature of the
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Figure 2: Mean speed in 9 segments of the corridor when h = h2 and cf = 0.1,
estimated from 4000 realizations of the controlled coordinate process.

domain, but the time spent on the boundary may be subject to the pedes-
trian’s preference. This aspect cannot be described by the proposed model,
since the Girsanov change of measure does not effect stickiness (cf. Re-
mark 10). Another extension would be to consider the controlled diffusion
case mentioned in the introduction.
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Abstract

In this paper, mean-field type games between two players with
backward stochastic dynamics are defined and studied. They make up
a class of non-zero-sum, non-cooperating, differential games where the
players’ state dynamics solve backward stochastic differential equations
(BSDE) that depend on the marginal distributions of player states.
Players try to minimize their individual cost functionals, also depend-
ing on the marginal state distributions. Under some regularity con-
ditions, we derive necessary and sufficient conditions for existence of
Nash equilibria. Player behavior is illustrated by numerical examples,
and is compared to a centrally planned solution where the social cost,
the sum of player costs, is minimized. The inefficiency of a Nash equi-
librium, compared to socially optimal behavior, is quantified by the
so-called price of anarchy. Numerical simulations of the price of anar-
chy indicate how the improvement in social cost achievable by a central
planner depends on problem parameters.

Keywords: mean-field type game, non-zero-sum differential game,
cooperative game, backward stochastic differential equations, linear-
quadratic stochastic control, social cost, price of anarchy
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D.1 Introduction

Mean-field type games (MFTG) is a class of games in which payoffs and
dynamics depend not only on the state and control profiles of the players,
but also on the distribution of the state and control processes. MFTGs
has by now a plethora of applications in the engineering sciences, see [16]
and the references therein. This paper studies MFTGs between two players,
with state-distribution dependent cost functionals J i : U i → R, i = 1, 2, and
mean-field BSDE state dynamics. The Nash solution (û1

· , û
2
· ) ∈ U1 × U2 is

dictated by the pair of inequalities{
J1(û1

· ; û
2
· ) ≤ J1(u1

· ; û
2
· ), ∀u1

· ∈ U1,

J2(û2
· ; û

1
· ) ≤ J2(u2

· ; û
1
· ), ∀u2

· ∈ U2.
(1)

Following the path laid-out in [1], we establish a Pontryagin type maximum
principle, yielding necessary and sufficient conditions for any pair of controls
satisfying (1). Behavior in the equilibrium (1) is compared to the socially
optimal solution, that minimizes the social cost J := J1 + J2.

D.1.1 Related Work

Pontryagin’s maximum principle is the tool, alongside dynamic program-
ming, to characterize optimal controls in both deterministic and stochastic
settings. It can treat not only standard stochastic systems, but generalizes to
optimal stopping, singular controls, risk-sensitive controls and partially ob-
served models. Pontryagin’s maximum principle yields necessary conditions
that must be satisfied by any solution. The necessary conditions become
sufficient under additional convexity conditions. Early results showed that
an optimal control along with the corresponding optimal state trajectory
must solve the so-called Hamiltonian system, which is a two-point (forward-
backward) boundary value problem, together with a maximum condition on
the so-called Hamiltonian function. A very useful aspect of this result is
that minimization of the cost functional (over a set of control functions)
may reduce to pointwise maximization of the Hamiltonian, at each point
in time (over the set of control values). Pontryagin’s technique for deter-
ministic systems and stochastic systems with uncontrolled diffusion can be
summarized as follows: assume that there exists an optimal control, make
a spike-variation of it and then consider the first order term of the Taylor
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expansion with respect to the perturbation. This leads to variational in-
equality and the result follows from duality. If the diffusion is controlled,
second order terms in the Taylor expansion have to be considered. In this
case, one ends up with two forward-backward SDEs and a more involved
maximum condition for the Hamiltonian. See [49] for a detailed account.
For stochastic systems, the backward equation is fundamentally different
from the forward equation, whenever one is looking for adapted solutions.
An adapted solution to a BSDE is a pair of adapted stochastic processes
(Y·, Z·), where Z· corrects “non-adaptiveness” caused by the terminal condi-
tion of Y·. As pointed out by [24], the first component Y· corresponds to the
mean evolution of the dynamics, and Z· to the risk between current time
and terminal time. The linear BSDE extends to non-linear BSDEs [39], with
applications not only within stochastic optimal control but also in stochastic
analysis [40] and finance [19, 21], and to forward-backward SDEs (FBSDE).
A BSDE with distribution-dependent coefficients, the mean-field BSDE, is
derived in [7] as the limit of a particle system. Existence and uniqueness
results and a comparison theorem for mean-field BSDEs are provided in [8].

In stochastic differential games, both zero-sum and nonzero-sum, Pon-
tryagin’s stochastic maximum principle (SMP) and dynamic programming
are the main tools for obtaining conditions for an equilibrium. These tools
were essentially inherited from the theory of stochastic optimal control. As in
the optimal control setting, the latter deals with solving systems of second-
order parabolic partial differential equations, while the former is related to
analyzing FBSDEs where, in the case of initial state constraints, the adjoint
process is a BSDE. For a recent example of the use of the SMP in stochastic
differential game theory, see [36].

The theory of mean-field type control (MFTC), initiated in [1], treats
stochastic control problems with coefficients dependent on the marginal
state-distribution. This theory is by now well developed for forward stochas-
tic dynamics, i.e., with initial conditions on state [6, 15, 9, 12]. With SMPs
for MFTC problems at hand, MFTG theory can inherit these techniques like
stochastic differential game theory does in the mean-field free case. See [44]
for a review of solution approaches to MFTGs. A MFTC problem can be in-
terpreted as a large population limit of a cooperative game, where the players
share a joint goal to optimize some objective [27]. A close relative to MFTC
is the mean field game (MFG). MFG is a class of non-cooperative stochastic
differential games where a large number of indistinguishable (anonymous)
players interact weakly through a mean-field coupling term, initiated by
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[22, 28] independently, and followed up by, among many others, [30, 45, 35].
Weak player-to-player interaction through a mean-field coupling restricts the
influence one player has on any other player to be inversely proportional to
the number of players, hence the level of influence of any specific player in
a large game is very small. The coupling of player state dynamics leads to
conflicting objectives, making the large game hard to analyze. The MFG
equilibrium then often provides an approximate solution of the mass behav-
ior in the pre-limit (finite population) game. In contrast to the MFG, players
in a MFTG can be influential, and distinguishable (non-anonymous). That
is, the state dynamics and the cost need not be of the same form over the
whole player population, and a single player can have a major influence on
other players’ dynamics and cost.

Already in [41], an SMP in local form was derived for a controlled non-
linear BSDE. By first finding a global estimate for the variation of the second
component of the BSDE solution, an SMP in global form was derived in [17].
A reinterpretation of BSDEs as forward stochastic optimal control problems
[24] opened up for a new solution approach in the field of control of BSDEs.
Inspired by the reinterpretation, optimal control of linear-quadric (LQ) BS-
DEs was solved in [32] by constructing a sequence of forward control problems
with an additional state constraint, whose limit solution is the solution to
the original LQ BSDE control problem. This approach was later used by
[47] to solve a general FBSDE control problem, where the authors overcome
the difficulty of controlling the diffusion in the forward process. Instead of
writing down a second-order adjoint equation for the full system, the tech-
nique of [32] is used. Previous to that, [48] studied optimal control problem
for general coupled forward–backward stochastic differential equations (FB-
SDEs) with controlled diffusions. A maximum principle of Pontryagin’s type
for the optimal control is derived, by means of spike variation techniques.

Optimal control of mean-field BSDEs has recently gained attention. In
[31] the mean-field LQ BSDE control problem with deterministic coefficients
is studied. Assuming the control space is linear, linear perturbation is used
to derive a stationarity condition which together with a mean-field FBSDE
system characterizes the optimal control. Existence of optimal controls is
also proven under convexity assumptions. Other recent work on the control
of BSDEs includes [43, 29], both using the FBSDE approach of [48].
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D.1.2 Potential Applications of MFTG with Mean-Field
BSDE Dynamics

In [3], a model is proposed for groups of pedestrians moving towards targets
they are forced to reach, such as deliveries and emergency personnel. The
strict terminal condition leads to the formulation of a dynamic model for
crowd motion where the state dynamics is a mean-field BSDE. Mean-field
effects appear in pedestrian crowd models as approximations of aggregate
human interaction, so the game would in fact be a MFTG [2]. A game
between such groups is of interest since it can be a tool for decentralized
decision making under conflicting interests. Other areas of application in-
clude strategies for financial investments, where often future conditions are
specified [14, 21] and lead to dynamic models including BSDEs. The al-
ready mentioned study [16] presents a lengthy list of applications of forward
MFTGs in engineering sciences.

D.1.3 Paper Contribution and Outline

In this paper, control of mean-field BSDEs is extended to games between
players whose state dynamics are mean-field BSDEs. Such games are in fact
MFTGs, since the distribution of each player is effected by both players’
choice of strategy. Our MFTG could be viewed as a game between mean-
field FBSDEs, where the backward equation is the state equation, and the
forward equation is pure noise. A Pontryagin’s type SMP is derived, resulting
in a verification theorem and conditions for existence of a Nash equilibrium.
This solution approach is similar to that of [41, 17, 31]. The use of spike-
perturbation requires minimal assumptions on the set of admissible controls,
and differentiation of functions over the space of probability measure makes
it possible to go beyond linear-quadratic mean-field cost and dynamics. The
state BSDE is not converted to a forward optimization problem in the spirit
of [32]. As a consequence, the adjoint equation in our SMP is a forward
SDE. For the sake of comparison, optimality conditions for the cooperative
situation are derived. In this setting, the players work together to optimize
social cost, which is the the sum of player costs. The approach used is a
straight-forward adaptation of the techniques used in control of SDEs of
mean-field type; again, we do not need to take the route via some equivalent
forward optimization problem to solve the backward MFTC problem. This
cooperative game is a MFTC problem, and our result here is basically a
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special case of the FBSDE results in [48] or [47] mentioned above, although
mean-field terms are present. Numerical simulations are done in the linear-
quadratic case, which is explicitly solvable up to a system of ODEs. The
examples pinpoint differences between player behavior in the game versus
the centrally planned solution. The fraction between the social cost in the
game equilibrium and the social cost optimum quantifies the game efficiency
and was first studied in [25] for traffic coordination on networks under the
name coordination ratio. This fraction was later renamed in [37] to the price
of anarchy. We notice that paying a high price for using large control values,
or deviating from a preferred initial position makes the problem stiffer, in the
sense that the improvement by team optimality is decreasing, while paying
a high price for mean-field related costs makes the problem less stiff.

The rest of this paper is organized as follows. The problem formulation
is given in Section D.2. Sections D.3 and D.4 deal with necessary and suf-
ficient conditions for any Nash equilibrium and social optimum; maximum
principles for the MFTG and the MFTC are derived. An LQ problem is
solved explicitly in Section D.5, and numerical results are presented. The
paper concludes with some remarks on possible extensions in Section D.6,
followed by an appendix containing proofs.

D.2 Problem formulation

List of Symbols

T ∈ (0,∞) the time horizon
(Ω,F ,F,P) the underlying filtered probability space
L(X) the distribution of a random variable X under P
L2
Ft(Ω;Rd) the set of Rd-valued Ft-measurable random variables X such that

E[|X|2] <∞
G the progressive σ-algebra
X· a stochastic process {Xt}t≥0

S2,k the set of Rk-valued, continuous G-measurable processes X· such
that E[ sup

t∈[0,T ]
|Xt|2] <∞

H2,k the set of Rk-valued G-measurable processes X· such that
E[
∫ T

0 |Xs|2ds] <∞
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U i the set of admissible controls for player i
P(X ) the set of probability measures on X
P2(X ) the elements of P(X ) with finite second moment
Θi
t the t-marginal of the state-, law- and control-tuple of player i
‖Z‖F the trace (Frobenius) norm of the matrix Z
∂yif(yi) derivative of the function f with domain Rd

∂µif(µi) derivative of the function f with domain P2(Rd), see
Appendix D.7 for details

Let T > 0 be a finite real number representing the time horizon of the
game. Consider a filtered probability space (Ω,F , {Ft}t≥0,P) on which two
independent standard Brownian motions W 1

· , W 2
· are defined, d1- and d2-

dimensional respectively. Additionally, y1
T , y

2
T ∈ L2

FT (Ω;Rd) and ξ, F0-
measurable, are defined on the space. We assume that these five random
objects are independent and that they generate the filtration F := {Ft}t≥0.
Notice that ξ makes F0 non-trivial. Let G be the σ-algebra on [0, T ]× Ω of
Ft-progressively measurable sets. For k ≥ 1, let S2,k be the set of Rk-valued
and continuous G-measurable processes X· := {Xt : t ∈ [0, T ]} such that
E[supt∈[0,T ] |Xt|2] < ∞, and let H2,k be the set of Rk-valued G-measurable
processes X· such that E[

∫ T
0 |Xs|2ds] <∞.

Let (U i, dU i) be a separable metric space, i = 1, 2. Player i picks her
control ui· from the set

U i :=

{
u : [0, T ]× Ω→ U i | u· F-adapted, E

[∫ T

0
dU i(us)

2ds

]
<∞

}
.

The distribution of any random variable ξ ∈ X will be denoted by L(ξ) ∈
P(X ), and −i will denote the index {1, 2}\i. Given a pair of controls
(u1
· , u

2
· ) ∈ U1 × U2, consider the system of controlled BSDEs

dY i
t = bi(t,Θi

t,Θ
−i
t , Zt)dt+ Zi,1t dW 1

t + Zi,2t dW 2
t , Y i

T = yiT , i = 1, 2, (2)

where Θi
t := (Y i

t ,L(Y i
t ), uit) and Zt := [Z1,1

t Z1,2
t Z2,1

t Z2,2
t ]. Furthermore,

bi : Ω× [0, T ]× S × U i × S × U−i × Rd×(2d1+2d2) → Rd,

where S := Rd × P(Rd) is equipped with the norm ‖(y, µ)‖S := |y|+ d2(µ),
d2 being the 2-Wasserstein metric on P(Rd). Rd×(2d1+2d2) is equipped with
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the trace norm ‖Z‖F = tr(ZZ∗)1/2. Note that if X is a square integrable
random variable in Rd, then d2(L(X)) < ∞ and L(X) ∈ P2(Rd), the space
of measures with finite d2-norm.

Given (u1
· , u

2
· ) ∈ U1×U2, a pair of Rd×Rd×(d1+d2)-valued G-measurable

processes, (Y i
· , [Z

i,1
· Z

i,2
· ]), i = 1, 2, is a solution to (2) if for all t ∈ [0, T ],

Y i
t = yiT −

∫ T

t
bi(s,Θi

s,Θ
−i
s , Zs)ds−

2∑
j=1

∫ T

t
Zi,js dW j

s , P-a.s.,

and (Y i
· , [Z

i,1
· Z

i,2
· ]) ∈ S2,d ×H2,d×(d1+d2).

Remark 1. Any terminal condition yiT ∈ L2
FT (Ω;Rd) naturally induces an

F-martingale Y i
t := E[yiT | Ft]. The martingale representation theorem then

gives existence of a unique process [Zi,1· , Z
i,2
· ] ∈ H2,d×(d1+d2) such that Y i

t =

yiT+
∫ T
t Zi,1s dW 1

s +
∫ T
t Zi,2s dW 2

s , i.e., [Zi,1· , Z
i,2
· ] plays the role of the projection

and without it, Y i
· would not be G-measurable. Hence the noise (W 1

· ,W
2
· )

generating the filtration is common to both players, and [Zi,1· , Z
i,2
· ], i = 1, 2

is their respective reaction to it. Player i may actually be effected by all the
noise in the filtration even if only some components of (W 1

· ,W
2
· ) appear in

bi. An interpretation of [Zi,1· , Z
i,2
· ] is that it is a second control of player i:

first she plays ui· to heed preferences on energy use, initial position etc., then
she picks [Zi,1· , Z

i,2
· ] so that her path to yiT is the optimal prediction based on

available information in the filtration at any given time.

Existence and uniqueness of (2) is given by a slight variation of the results
of [8], where the one-dimensional case is treated. For the d-dimensional
mean-field free case, see [38].

Assumption 1. The process bi(ω, ·, 0, . . . , 0), i = 1, 2, belongs to H2,d and
for any vi = (yi, µi, ui, y−i, µ−i, u−i, z) ∈ S × U1 × S × U2 × Rd×(2d1+2d2),
bi(ω, ·, vi), i = 1, 2, is G-measurable.

Assumption 2. Given a pair of control values (u1, u2) ∈ U1 × U2, there
exists a constant L > 0 such that for all t ∈ [0, T ] and tuples (y1, µ1, y2, µ2, z),
(ȳ1, µ̄1, ȳ2, µ̄2, z̄) ∈ S × S × Rd(2d1+2d2),

|bi(t, yi, µi, ui, y−i, µ−i, u−i, z)− bi(t, ȳi, µ̄i, ui, ȳ−i, µ̄−i, u−i, z̄)|

≤ L

 2∑
j=1

‖(yj , µj)− (ȳj , µ̄j)‖S + ‖z − z̄‖F

 , P-a.s., i = 1, 2.
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Theorem 2. Let Assumptions 1 and 2 hold. Then, for any terminal condi-
tions y1

T , y
2
T ∈ L2(Ω,FT ,P;Rd) and (u1

· , u
2
· ) ∈ U1 ×U2, the system of mean-

field BSDEs (2) has a unique solution (Y i
· , [Z

i,1
· , Z

i,2
· ]) ∈ S2,d ×H2,d×(d1+d2),

i = 1, 2.

Next, we introduce the best reply of player i as follows:

J i(ui· ;u
−i
· ) := E

[∫ T

0
f i(t,Θi

t,Θ
−i
t )dt+ hi(Y i

0 ,L(Y i
0 ), Y −i0 ,L(Y −i0 ))

]
for given maps f i : [0, T ]× S × U i × S × U−i → R and hi : Ω× S × S → R.

Assumption 3. For any pair of controls (u1
· , u

2
· ) ∈ U1×U2, f i(·,Θi

· ,Θ
−i
· ) ∈

L1
F (0, T ;R) and h(Y i

0 ,L(Y i
0 ), Y −i0 ,L(Y −i0 )) ∈ L1

F0
(Ω;R).

The problems we consider in the following sections are

1. The Mean-field Type Game (MFTG): find the Nash equilibrium con-
trols of

inf
ui·∈U i

J i(ui· ;u
−i
· ),

s.t. dY i
t = bi(t,Θi

t,Θ
−i
t , Zt)dt+ Zi,1dW 1

t + Zi,2t dW 2
t ,

Y i
T = yiT , i = 1, 2,

(3)

2. The Mean-field Type Control Problem (MFTC): find the optimal con-
trol pair of

inf
(u1· ,u

2
· )∈U1×U2

J(u1
· , u

2
· ) := J1(u1

· ;u
2
· ) + J2(u2

· ;u
1
· ),

s.t. dY i
t = bi(t,Θi

t,Θ
−i
t , Zt)dt+ Zi,1dW 1

t + Zi,2t dW 2
t ,

Y i
T = yiT , i = 1, 2.

(4)

In the game each player assumes that the other player acts rationally, i.e.,
minimizes cost, and picks her control as the best response to that. This leads
to a set of two inequalities, characterizing any control pair (u1

· , u
2
· ) that con-

stitutes a Nash equilibrium. In this paper, each player is aware of the other
player’s control set, best response function and state dynamics. Therefore,
even though the decision process is decentralized, both players solve the same
set of inequalities. When there is not a unique Nash equilibrium, there is
an ambiguity around which equilibrium strategy to play if the players do
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not communicate. In the control problem, a central planner decides what
strategies are played by both of the players. The central planner might just
be the two players cooperating towards a common goal, or some superior
decision maker. The goal is to find the control pair that minimizes the social
cost J .

The notion of a centrally planned/cooperative solution is related to the
concept of team optimality in team problems [4]. In a team problem, the
players share a common objective. A team-optimal solution is then the
solution to the joint minimization of the common objective. In our case, the
social cost J is a common objective in the MFTC. The Nash solution to the
team problem is given by the control pair that satisfies the two inequalities{

J(û1
· , û

2
· ) ≤ J(u1

· , û
2
· ), ∀u1

· ∈ U1,

J(û1
· , û

2
· ) ≤ J(û1

· , u
2
· ), ∀u2

· ∈ U2.
(5)

In (5), each player is minimizing the social cost with respect to its marginal,
under the assumption that the other player is minimizing its marginal. This
is the so-called player-by-player optimality of a control pair in a team prob-
lem. Notice that if we set J1(u1

· ;u
2
· ) = J2(u2

· ;u
1
· ) in (3), it becomes a team

problem. The solution to the MFTG (3) will then be the player-by-player
optimal solution to the minimization of the social cost.

Logically, we expect the optimal social cost to be lower than the social
cost in a Nash equilibrium. The ratio between the worst case social cost in
the game and the optimal social cost is called the price of anarchy, and we
will highlight it in the numerical simulations in Section D.5 where we also
observe behavioral differences between MFTG and MFTC given identical
data.

D.3 Problem 1: MFTG

This section is the derivation of necessary and sufficient equilibrium condi-
tions of (3). Given the existence of such a pair of controls, we derive the
conditions by the means of a Pontryagin type stochastic maximum principle.

Assume that (û1
· , û

2
· ) is a Nash equilibrium for the MFTG, i.e., satisfies

the following system of inequalities,{
J1(û1

· ; û
2
· ) ≤ J1(u1

· ; û
2
· ), u1

· ∈ U1,

J2(û2
· ; û

1
· ) ≤ J2(u2

· ; û
1
· ), u2

· ∈ U2.
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Consider the first inequality, with ūε,1 chosen as a spike-perturbation of û1.
That is, for u· ∈ U1,

ūε,1t :=

{
û1
t , t ∈ [0, T ]\Eε,
ut, t ∈ Eε.

Here, Eε is any subset of [0, T ] of Lebesgue measure ε. Clearly, ūε,1· ∈ U1.
When player 1 plays the spike-perturbed control ūε,1· and player 2 plays the
equilibrium control û2

· , we denote the dynamics by
dȲ ε,1

t = b1(t, Θ̄ε,1
t , Ȳ ε,2

t ,L(Ȳ ε,2
t ), û2

t , Z̄
ε
t )dt+ Z̄ε,1,1t dW 1

t + Z̄ε,1,2t dW 2
t ,

Ȳ 1
T = y1,

dȲ ε,2
t = b2(t, Ȳ ε,2

t ,L(Ȳ ε,2
t ), û2

t , Θ̄
ε,1
t , Z̄εt )dt+ Z̄ε,2,1t dW 1

t + Z̄ε,2,2t dW 2
t ,

Ȳ 2
T = y2.

(6)

The performance of the perturbed dynamics (6) will be compared with that
of the equilibrium dynamics{

dŶ 1
t = b1(t, Θ̂1

t , Θ̂
2
t , Ẑt)dt+ Ẑ1,1

t dW 1
t + Ẑ1,2

t dW 2
t , Ŷ

1
T = y1,

dŶ 2
t = b2(t, Θ̂2

t , Θ̂
1
t , Ẑt)dt+ Ẑ2,1

t dW 1
t + Ẑ2,2

t dW 2
t , Ŷ

2
T = y2.

For simplicity, we write for ϕ ∈ {b1, f1, h1}, ψ ∈ {b2, f2, h2}, and ϑ ∈
{bi, f i, hi, i = 1, 2},

ϕ̄εt := ϕ(t, Θ̄ε,1
t , Ȳ ε,2

t ,L(Ȳ ε,2
t ), û2

t , Z̄
ε
t ),

ψ̄εt := ψ(t, Ȳ ε,2
t ,L(Ȳ ε,2

t ), û2
t , Θ̄

ε,1
t , Z̄εt ),

ϑ̂t := ϑ(t, Θ̂i
t, Θ̂
−i
t , Ẑt).

In this shorthand notation, which will be used from now on, the difference
in performance is

J1(ūε,1· ; û2
· )− J1(û1

· ; û
2
· ) = E

[∫ T

0
f̄ ε,1t − f̂1

t dt+ h̄ε,10 − ĥ
1
0

]
.

Any derivative of f : a→ f(a) will be denoted ∂af , indifferent of the space
the function is mapping from/to.
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Assumption 4. The functions

(y1, µ1, u1, y2, µ2, u2, z) 7→ bi(t, yi, µi, ui, y−i, µ−i, u−i, z)

(y1, µ1, u1, y2, µ2, u2) 7→ f i(t, yi, µi, ui, y−i, µ−i, u−i)

(y1, µ1, y2, µ2) 7→ hi(yi, µi, y−i, µ−i)

are for all t ∈ [0, T ] a.s. differentiable at (Ŷ 1
0 ,L(Ŷ 1

0 ), Ŷ 2
0 ,L(Ŷ 2

0 )), (Θ̂1
t , Θ̂

2
t , Ẑt),

and (Θ̂1
t , Θ̂

2
t ) respectively. Furthermore,

∂yj b̂
i
t, ∂µj b̂

i
t, ∂yj f̂

i
t , ∂µj f̂

i
t , i, j = 1, 2,

are for all t a.s. uniformly bounded, and

∂yj ĥ
i
0 + E

[
∗(∂µj ĥ

i
0)
]
∈ L2

F0
(Ω;Rd).

For i = 1, 2,

h̄ε,i0 − ĥ
i
0 =

2∑
j=1

{
∂yj ĥ

i
0(Ȳ ε,j

0 − Ŷ j
0 ) + E

[
(∂µj ĥ

i
0)∗(Ȳ ε,j

0 − Ŷ j
0 )
]}

+

2∑
j=1

{
o
(
|Ȳ ε,j

0 − Ŷ j
0 |
)

+ o
(
E[|Ȳ ε,j

0 − Ŷ j
0 |

2]1/2
)}

.

(7)

A brief overview on differentiation of functions from P2(Rd) to R is found
in Appendix D.7 which also defines the notation (∂µj ĥ

i
0)∗ in (29). Both

Ȳ ε,1
t −Ŷ 1

t and Ȳ ε,2
t −Ŷ 2

t appear in (7), this suggests that we need to introduce
two first order variation processes. That is, we want (Ỹ i

· , [Z̃
i,1
· , Z̃

i,2
· ]), i = 1, 2,

that for some C > 0 satisfies

sup
0≤t≤T

E

|Ỹ i
t |2 +

2∑
j=1

∫ t

0
‖Z̃i,js ‖2F ds

 ≤ Cε2,

sup
0≤t≤T

E

[
|Ȳ ε,i
t − Ŷ i

t − Ỹ i
t |2 +

2∑
j=1

∫ t

0
‖Z̄ε,i,js − Ẑi,js − Z̃i,js ‖2F ds

]
≤ Cε2.

(8)

Let δi denote variation in ui· so that for ϑ ∈ {f i, bi, i = 1, 2},

δiϑ(t) := ϑ(t, Ŷ i
t ,L(Ŷ i

t ), ūε,it , Θ̂
−i
t , Ẑt)− ϑ̂t.
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Assumption 5. For yi, µi ∈ S, i = 1, 2, z ∈ Rd×(2d1+2d2) and (u1, u2),
(v1, v2) ∈ U1 × U2, there exists a constant L > 0 such that

|bi(t, yi, µi, ui, y−i, µ−i, u−i, z)− bi(t, yi, µi, vi, y−i, µ−i, v−i, z)|

≤ L
2∑
j=1

dUj (u
j , vj),

a.s. for all t ∈ [0, T ].

Lemma 3. Let Assumption 1, 2, 4, and 5 be in force. The first order
variation processes that satisfy (8) is given by the following system of BSDEs,

dỸ i
t =

(
2∑
j=1

{
∂yj b̂

i
tỸ

j
t + E

[
(∂µj b̂

i
t)
∗Ỹ j
t

]}

+

2∑
j,k=1

∂zj,k b̂
i
tZ̃

j,k
t + δ1b

i(t)1Eε(t)

)
dt+

2∑
j=1

Z̃i,jt dW j
t ,

Ỹ i
T = 0, i = 1, 2.

A proof of the lemma is found in the appendices. By Lemma 3,

E
[
h̄ε,10 − ĥ

1
0

]
= E

 2∑
j=1

∂yj ĥ
1
0Ỹ

j
0 + E

[
(∂µj ĥ

1
0)∗Ỹ j

0

]+ o(ε)

= E

 2∑
j=1

p1,j
0 Ỹ j

0

+ o(ε),

where the costates p1,j
· , j = 1, 2, satisfy p1,j

0 := ∂yj ĥ
1
0 + E

[
∗(∂µj ĥ

1
0)
]
. The

notation ∗(∂µj ĥ1
0) is defined in (30) in the appendices. Assumption 4 grants

us existence and uniqueness of solutions to (9) below.

Lemma 4 (Duality relation). Let Assumption 1, 2, and 4 hold. Let p1,j
· be

the solution to the SDE
dp1,j

t = −
{
∂yjĤ

1
t + E

[
∗(∂µjĤ

1
t )
]}

dt−
2∑

k=1

∂zj,kĤ
1
t dW

k
t ,

p1,j
0 = ∂yj ĥ

1
0 + E

[
∗(∂µj ĥ

1
0)
]
,

(9)
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where for (yi, µi) ∈ S, i = 1, 2, and (u1, u2, z) ∈ U1 × U2 × Rd×(2d1+2d2),

H1(ω, t, y1, µ1, u1, y2, µ2, u2, z, p1,1
t , p1,2

t )

:=
2∑
j=1

bj(ω, t, yj , µj , uj , y−j , µ−j , u−j , z)p1,j
t

− f1(t, y1, µ1, u1, y2, µ2, u2).

(10)

Then the following duality relation holds,

E
[∑2

j=1 p
1,j
0 Ỹ j

0

]
= −E

[∫ T
0

∑2
j=1 p

1,j
t δ1b

j(t)1Eε(t) + Ỹ j
t

(
∂yj f̂

1
t + E

[
∗(∂µj f̂

1
t )
])
dt
]
.

The proof of the duality relation has been passed on to the appendices.
We have that

f̄ ε,it − f̂ it =

2∑
j=1

{
∂yj f̂

i
t (Ȳ

ε,j
t − Ŷ j

t ) + E
[
(∂µj f̂

i
t )
∗(Ȳ ε,j

t − Ŷ j
t )
]}

+ δ1f
i(t)1Eε(t) +

2∑
j=1

{
o
(
|Ȳ ε,j
t − Ŷ j

t |
)

+ o
(
E[|Ȳ ε,j

t − Ŷ j
t |2]1/2

)}
.

(11)

By the expansion (11) and Lemma 3,

E
[∫ T

0
f̄ ε,1t − f̂1

t dt

]

= E

∫ T

0

2∑
j=1

Ỹ j
t

(
∂yj f̂

1
t + E

[
∗(∂µj f̂

1
t )
])

+ δ1f
1(t)1Eε(t)dt

+ o(ε),

which yields

J1(ūε,1· ; û2
· )− J1(û1

· ; û
2
· )

= E
[∫ T

0

{
−p1,1

t δ1b
1(t)− p1,2

t δ1b
2(t) + δ1f

1(t)
}

1Eε(t)dt

]
+ o(ε).

Therefore

J1(ūε,1· ; û2
· )− J1(û1

· ; û
2
· ) = −E

[∫ T

0
δ1H

1(t)1Eε(t)dt

]
+ o(ε). (12)
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From the last identity, we can derive necessary and sufficient conditions for
player 1’s best response to û2

· .
The same argument can be carried out for players 2’s best response to

û1
· . Naturally, we need to impose the corresponding assumptions on player

2’s control. For completeness and later reference, we state now the second
player’s version of Lemma 4.

Lemma 5. (Duality relation, player 2) Let Assumptions 1, 2, and 4 hold,
and let p2,j

· be the solution to the SDE
dp2,j

t = −
{
∂yjĤ

2
t + E

[
∗(∂µjĤ

2
t )
]}

dt−
2∑

k=1

∂zj,kĤ
2
t dW

k
t ,

p2,j
0 = ∂yj ĥ

2
0 + E

[
∗(∂µj ĥ

2
0)
]
,

(13)

where for (yi, µi) ∈ S, i = 1, 2, and (u1, u2, z) ∈ U1 × U2 × Rd×(2d1+2d2),

H2(ω, t, y2, µ2, u2, y1, µ1, u1, z, p2,1
t , p2,2

t )

:=

2∑
j=1

bj(ω, t, yj , µj , uj , y−j , µ−j , u−j , z)p2,j
t

− f2(t, y2, µ2, u2, y1, µ1, u1).

(14)

Then the following duality relation holds,

E

 2∑
j=1

p2,j
0 Ỹ j

0


= −E

∫ T

0

2∑
j=1

p2,j
t δ2b

j(t)1Eε(t) + Ỹ j
t

(
∂yj f̂

2
t + E

[
∗(∂yj f̂

2
t )
])
dt

 .
Necessary conditions for an equilibrium can be stated as a system of

six equations, the two state BSDEs and the four costate (adjoint) SDEs.
Sufficient conditions for a Nash equilibrium can now be stated as convexity
conditions on the four functions H i, hi, i = 1, 2. We let Assumption 1–5 be
in place.
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Theorem 6 (Necessary equilibrium conditions). Suppose that (û1
· , û

2
· ) is an

equilibrium control for the MFTG and that pi,j· , i, j = 1, 2, solve (9) and
(13). Then, for i = 1, 2,

ûit = arg max
α∈U i

H i(t, Ŷ i
t ,L(Ŷ i

t ), α, Θ̂−it , Ẑt, p
i,1
t , p

i,2
t ), a.e.-t, P-a.s. (15)

Proof. Let Eε := [s, s + ε], u· ∈ U1 and A ∈ Ft for t ∈ Eε. Consider the
spike-perturbation

uεt :=

{
ut1A + û1

t 1Ac , t ∈ Eε,
û1
t , t ∈ [0, T ]\Eε.

Then

Ĥ1
t −H1(t, Ŷ 1

t ,L(Ŷ 1
t ), uεt , Θ̂

2
t , Ẑt, p

1,1
t , p1,2

t ) =(
Ĥ1
t −H1(t, Ŷ 1

t ,L(Ŷ 1
t ), ut, Θ̂

2
t , Ẑt, p

1,1
t , p1,2

t )
)

1A1Eε(t).

Applying (12), we obtain

1

ε
E
[∫ s+ε

s

(
Ĥ1
t −H1(t, Ŷ 1

t ,L(Ŷ 1
t ), ut, Θ̂

2
t , Ẑt, p

1,1
t , p1,2

t )
)

1Adt

]
≥ 1

ε
o(ε).

Sending ε to zero yields for a.e. s ∈ [0, T ]

E
[(
Ĥ1
s −H1(s, Ŷ 1

s ,L(Ŷ 1
s ), us, Θ̂

2
s, Ẑs, p

1,1
s , p1,2

s )
)

1A

]
≥ 0.

The last inequality holds for all A ∈ Fs, thus for a.e. s ∈ [0, T ], it holds
P-a.s. that

E
[(
Ĥ1
s −H1(s, Ŷ 1

s ,L(Ŷ 1
s ), us, Θ̂

1
s, Ẑs, p

1,1
s , p1,2

s )
)
| Fs

]
≥ 0. (16)

By measurability of the integrand in (16),

û1
t = arg max

α∈U1

H1(t, Ŷ 1
t ,L(Ŷ 1

t ), α, Θ̂2
t , Ẑt, p

1,1
t , p1,2

t ), a.e. t ∈ [0, T ], P-a.s.

The same argument yields

û2
t = arg max

α∈U2

H2(t, Ŷ 2
t ,L(Ŷ 2

t ), α, Θ̂1
t , Ẑt, p

2,1
t , p2,2

t ), a.e. t ∈ [0, T ], P-a.s.
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Theorem 7 (Sufficient equilibrium conditions). Suppose that û1
· and û2

·
satisfy (15). Suppose furthermore that for (t, pi,1, pi,2, z) ∈ [0, T ]×Rd×Rd×
Rd×(2d1+2d2), i = 1, 2,

(y1, µ1, u1, y2, µ2, u2) 7→ H i(t, yi, µi, ui, y−i, µ−i, u−i, z, pi,1, pi,2)

is concave P-a.s. and

(y1, µ1, y2, µ2) 7→ hi(yi, µi, y−i, µ−i)

is convex P-a.s. Then û1
· , û

2
· constitute an equilibrium control and the pair

(Ŷ i
· , [Ẑ

i,1
· , Ẑ

i,2
· ], ûi·), i = 1, 2, is an equilibrium for the MFTG.

Proof. By assumption, δiH i(t) ≤ 0 for any spike variation, almost surely for
a.e. t. Applying the convexity and concavity assumptions in the expansion
steps results in the inequality

0 ≤ −E
[∫ T

0
δiH

i(t)1Eε(t)dt

]
≤ J i(ui· ; û−i· )− J i(ûi· ; û−i· ).

D.4 Problem 2: MFTC

Carrying out a similar argument to that of the previous section, we find
necessary optimality conditions for problem (4). Also, we readily get a veri-
fication theorem. The pair (û1

· , û
2
· ) ∈ U1 × U2 is optimal if

J(û1
· , û

2
· ) ≤ J(u1

· , u
2
· ), (u1

· , u
2
· ) ∈ U1 × U2. (17)

Assume from now on that (û1
· , û

2
· ) is an optimal control. We study the

inequality (17) when (ǔε,1· , ǔ
ε,2
· ) is a spike-perturbation of (û1

· , û
2
· ),

(ǔε,1t , ǔε,2t ) :=

{
(û1
t , û

2
t ), t ∈ [0, T ]\Eε,

(u1
t , u

2
t ), t ∈ Eε,

where Eε is any subset of [0, T ] of Lebesgue measure ε and (u1
· , u

2
· ) ∈ U1×U2.

When the players use the perturbed control, we denote the state dynamics
by {

dY̌ ε,1
t = b1(t, Θ̌ε,1

t , Θ̌ε,2
t , Žεt )dt+ Žε,1,1t dW 1

t + Žε,1,2t dW 2
t , Y̌

1
T = y1,

dY̌ ε,2
t = b2(t, Θ̌ε,2

t , Θ̌ε,1
t , Žεt )dt+ Žε,2,1t dW 1

t + Žε,2,2t dW 2
t , Y̌

2
T = y2,
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and we will compare their performance to that of the optimally controlled
state dynamics{

dŶ 1
t = b1(t, Θ̂1

t , Θ̂
2
t , Ẑt)dt+ Ẑ1,1

t dW 1
t + Ẑ1,2

t dW 2
t , Ŷ

1
T = y1,

dŶ 2
t = b2(t, Θ̂2

t , Θ̂
1
t , Ẑt)dt+ Ẑ2,1

t dW 1
t + Ẑ2,2

t dW 2
t , Ŷ

2
T = y2.

To simplify notation we write

ϑ̌εt := ϑ(t, Θ̌ε,i
t , Θ̌

ε,−i
t , Žεt ),

ϑ̂t := ϑ(t, Θ̂i
t, Θ̂
−i
t , Ẑt),

for ϑ ∈ {bi, f i, hi, i = 1, 2} and in this notation

J(ǔε,1· , ǔ
ε,2
· )− J(û1

· , û
2
· )

= E
[∫ T

0
f̌ ε,1t + f̌ ε,2t − f̂1

t − f̂2
t dt+ ȟε,10 + ȟε,20 − ĥ

1
0 − ĥ2

0

]
= E

[∫ T

0
f̌ εt − f̂tdt+ ȟε0 − ĥ0

]
where ft := f1

t + f2
t and ht := h1

t + h2
t . Again, we want to find first

order variation processes (Ỹ i
· , [Z̃

i,1
· , Z̃

i,2
· ]), i = 1, 2, that satisfy (8) with

(Ȳ ε,i
· , [Z̄ε,i,1· , Z̄ε,i,2· ]) replaced by its ’checked’ counterpart (Y̌ ε,i

· , [Žε,i,1· , Žε,i,2· ]).

Assumption 6. The functions

(y1, µ1, u1, y2, µ2, u2, z) 7→ bi(t, yi, µi, ui, y−i, µ−i, u−i, z)

(y1, µ1, u1, y2, µ2, u2) 7→ f i(t, yi, µi, ui, y−i, µ−i, u−i)

(y1, µ1, y2, µ2) 7→ hi(yi, µi, y−i, µ−i)

are for all t a.s. differentiable at (Ŷ 1
0 ,L(Ŷ 1

0 ), Ŷ 2
0 ,L(Ŷ 2

0 )), (Θ̂1
t , Θ̂

2
t , Ẑt), and

(Θ̂1
t , Θ̂

2
t ) respectively. Furthermore,

∂yj b̂
i
t, ∂µj b̂

i
t, ∂yj f̂

i
t , ∂µj f̂

i
t , i, j = 1, 2,

are for all t a.s. uniformly bounded and ∂yj ĥi0 + E
[
∗(∂jµĥi0)

]
∈ L2

F0
(Ω;Rd).

Notice that the point of differentiability is generally not the same in
Assumption 4 and 6. Above, (û1

· , û
2
· ) is an optimal control while in Assump-

tion 4, it is an equilibrium control. Let δ denote simultaneous variation in
controls, for ϑ ∈ {f i, bi, i = 1, 2},

δϑ(t) := δ1ϑ(t) + δ2ϑ(t).
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Lemma 8. Let Assumption 1, 2, 5, and 6 be in force. The first order
variation processes that satisfy the ’checked’ version of (8) are given by the
following system of BSDEs,

dỸ i
t =

(
2∑
j=1

{
∂yj b̂

iỸ j
t + E

[
(∂µj b̂

i)∗Ỹ j
t

]}

+ δbi(t)1Eε(t) +
2∑

j,k=1

∂zj,k b̂
iZ̃j,kt

)
dt+

2∑
j=1

Z̃i,jt dW j
t ,

Ỹ i
T = 0, i = 1, 2.

The proof follows the same steps as the proof of Lemma 3. By Lemma 8,

E
[
ȟε0 − ĥ0

]
= E

 2∑
j=1

pj0Ỹ
j

0

+ o(ε),

where pj0 := ∂yj ĥ0 + E
[
∗(∂µj ĥ0)

]
.

Lemma 9 (Duality relation). Let Assumption 1, 2, and 6 hold. Let pj· be
the solution to the SDE

dpjt = −
{
∂yjĤt + E

[
∗(∂µjĤt)

]}
dt−

2∑
k=1

∂zj,kĤtdW
k
t ,

pj0 = ∂yj ĥ0 + E
[
∗(∂µj ĥ0)

]
,

(18)

where for (yi, µi) ∈ S, i = 1, 2, and (u1, u2, z) ∈ U1 × U2 × Rd×(2d1+2d2),

H(ω, t, y1, µ1, u1, y2, µ2, u2, z, p1
t , p

2
t )

:=
2∑
j=1

bj(ω, t, yj , µj , uj , y−j , µ−j , u−j , z)pjt

−
2∑
j=1

f j(t, yj , µj , uj , y−j , µ−j , u−j).
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Then the following duality relation holds,

E

 2∑
j=1

pj0Ỹ
j

0


= −E

∫ T

0

2∑
j=1

pjtδb
j(t)1Eε(t) + Ỹ j

t

(
∂yj f̂t + E

[
∗(∂µj f̂t)

])
dt

 .
The proof of Lemma 9 and Lemma 4 are almost identical. By Lemma 8,

J(ǔε,1· , ǔ
ε,2
· )− J(û1

· , û
2
· )

= E
[∫ T

0

{
−p1

t δb
1(t)− p2

t δb
2(t) + δf(t)

}
1Eε(t)dt

]
+ o(ε).

Thus

J(ǔε,1· , ǔ
ε,2
· )− J(û1

· , û
2
· ) = −E

[∫ T

0
δH(t)1Eε(t)dt

]
+ o(ε).

In the following two theorems, Assumptions 1–3 and 5–6 are in force.

Theorem 10 (Necessary optimality conditions). Suppose that (û1
· , û

2
· ) is an

optimal control for the MFTC and that pi· , i = 1, 2, solves (18). Then, for
i = 1, 2,

(û1
t , û

2
t ) = arg max

(v,w)∈U1×U2

H(t, Ŷ 1
t ,L(Ŷ 1

t ), v, Ŷ 2
t ,L(Ŷ 2

t ), w, Ẑt, p
1
t , p

2
t ) (19)

for almost every t, P-a.s.

Theorem 11 (Sufficient optimality conditions). Suppose (û1
· , û

2
· ) satisfy (19)

and that, for (t, p1, p2, z) ∈ [0, T ]× Rd × Rd × Rd×(2d1+2d2),

(y1, µ1, u1, y2, µ2, u2) 7→ H(t, y1, µ1, u1, y2, µ2s, u2, z, p1, p2)

is concave P-a.s. and

(y1, µ1, y2, µ2) 7→ h(y1, µ1, y2, µ2)

is convex P-a.s. Then (û1
· , û

2
· ) is an optimal control and (Ŷ i

· , [Ẑ
i,1
· , Ẑ

i,2
· ], ûi·),

i = 1, 2 solves the MFTC.
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D.5 Example: the linear-quadratic case

In this section we consider a linear-quadratic version of (3) and (4), in the
one-dimensional case. Let ai, ci,j , qi,j , q̄i,j , q̃i,j , s̄i,j , si, s̄Ei , ri : [0, T ] 7→ R,
i, j = 1, 2 be deterministic coefficient functions, uniformly bounded over
[0, T ]. Additionally, ri(t) ≥ ε > 0 for i = 1, 2. Define

bi(t,Θi
t,Θ
−i
t , Zt) = ai(t)u

i
t +

2∑
j=1

ci,j(t)W
j
t ,

f i(t,Θi
t,Θ
−i
t ) =

2∑
j=1

{
1

2
qi,j(t)(Y

j
t )2 +

1

2
q̄i,j(t)E[Y j

t ]2

+ q̃i,j(t)Y
j
t E[Y j

t ] + s̄i,j(t)E[Y j
t ]Y −jt

}
+ si(t)Y

i
t Y
−i
t + s̄Ei (t)E[Y i

t ]E[Y −it ] +
1

2
ri(t)(u

i
t)

2.

(20)

The uniform boundedness of the coefficients implies Assumption 1–6,
given initial costs h1, h2, satisfying Assumption 4 and 6. Assumption 3 (in-
tegrability of f i) follows by classical BSDE estimates [50]. The Hamiltonian
functions of the two player game, defined in (10) and (14), are in this example
given by

H i(t,Θi
t,Θ
−i
t , Zt)

=

a1(t)u1
t +

2∑
j=1

c1,jW
j
t

 pi,1 +

a2(t)u2
t +

2∑
j=1

c2,jW
j
t

 pi,2

−
2∑
j=1

{
1

2
qi,j(t)(Y

j
t )2 +

1

2
q̄i,j(t)E[Y j

t ]2

+ q̃i,j(t)Y
j
t E[Y j

t ] + s̄i,j(t)E[Y j
t ]Y −jt

}
− si(t)Y i

t Y
−i
t − s̄Ei (t)E[Y i

t ]E[Y −it ]− 1

2
ri(t)(u

i
t)

2.
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The Hessian of (y1, . . . , u2) 7→ H1(t, y1, . . . , u2, z, p1,1, p1,2) is

H1(t) := −



q1,1(t) q̃1,1(t) 0 s1(t) s̄1,2(t) 0

q̃1,1(t) q̄1,1(t) 0 s̄1,1(t) s̄E1 (t) 0

0 0 r1(t) 0 0 0

s1(t) s̄1,1(t) 0 q1,2(t) q̃1,2(t) 0

s̄1,2(t) s̄E1 (t) 0 q̃1,2(t) q̄1,2(t) 0

0 0 0 0 0 0


and the Hessian of (y1, . . . , u2) 7→ H2(t, y1, . . . , u2, z, p2,1, p2,2) is

H2(t) := −



q2,1(t) q̃2,1(t) 0 s2(t) s̄2,2(t) 0

q̃2,1(t) q̄2,1(t) 0 s̄2,1(t) s̄E2 (t) 0

0 0 0 0 0 0

s2(t) s̄2,1(t) 0 q2,2(t) q̃2,2(t) 0

s̄2,2(t) s̄E2 (t) 0 q̃2,2(t) q̄2,2(t) 0

0 0 0 0 0 r2(t)


.

The coefficients are further assumed to be such that H1(t) and H2(t) are
negative semi-definite for all t ∈ [0, T ]. Also, we assume that (y1, . . . , µ2) 7→
hi(y1, . . . , µ2), yet unspecified, is convex. Theorem 7 yields

ûit = ai(t)r
−1
i (t)pi,it ,

where pi,i· solves (9) if i = 1 and (13) if i = 2. In fact, the equilibrium is
unique in this case, since ûi· is the unique pointwise solution to (15) and pi,i·
is unique, see (35)-(36). By Theorem 11,

ûit = ai(t)r
−1
i (t)pit,

where pi· solves (18), is an optimal control for the linear-quadratic MFTC
and it is unique.

D.5.1 MFTG

The equilibrium dynamics are

dŶ i
t =

a2
i (t)r

−1
i (t)pi,it +

2∑
j=1

ci,jW
j
t

 dt+ Ẑi,1t dW 1
t + Ẑi,2t dW 2

t , Ŷ
i
T = yiT .
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We see that only two costate processes, p1,1
· and p2,2

· , are relevant here. This
is a consequence of the lack of explicit dependence on u−i in the bi and f i

specified in (20). Nevertheless, the running cost f i depends implicitly on u−i

through player −i’s state and expected state. We make the following ansatz:
there exists deterministic functions αi, ᾱi, βi, β̄i, θi : [0, T ]→ R, i = 1, 2 and
γi,j : [0, T ]→ R, i, j = 1, 2, such that

Ŷ i
t = αi(t)p

i,i
t + ᾱi(t)E[pi,it ] + βi(t)p

−i,−i
t + β̄i(t)E[p−i,−it ]

+ γi,1(t)W 1
t + γi,2(t)W 2

t + θi(t).
(21)

Clearly, we need to impose the terminal conditions

αi(T ) = 0, ᾱi(T ) = 0, βi(T ) = 0, β̄i(T ) = 0, γi,j(T ) = 0, θi(T ) = yiT .

Calculations presented in the appendix identifies coefficients and yields the
following system of ODEs determining αi(·), . . . , θi(·),



α̇i(t) + αi(t)P
i(t) + βi(t)R

−i(t) = a2
i (t)r

−1
i (t),

˙̄αi(t) + αi(t)P̄i(t) + ᾱi(t)(P
i(t) + P̄ i(t)) +

βi(t)R̄
−i(t) + β̄i(t)(R

−i(t) + R̄−i(t)) = 0,

β̇i(t) + αi(t)R
i(t) + βi(t)P

−i(t) = 0,

˙̄βi(t) + αi(t)R̄
i(t) + ᾱi(t)(R

i(t) + R̄i(t)) +

βi(t)P̄
−i(t) + β̄i(t)(P

−i(t) + P̄−i(t)) = 0,

γ̇i,1(t) + αi(t)Φ
i(t) + βi(t)Φ

−i(t) = ci,1(t),

γ̇i,2(t) + αi(t)Ψ
i(t) + βi(t)Ψ

−i(t) = ci,2(t),

θ̇i(t) + θi(t)
(

(αi(t) + ᾱi(t))(Qi(t) + Q̄i(t)) +

(βi(t) + β̄i(t))(S−i(t) + S̄−i(t))
)

+

θ−i(t)
(

(αi(t) + ᾱi(t))(Si(t) + S̄i(t)) +

(βi(t) + β̄i(t))(Q−i(t) + Q̄−i(t))
)

= 0,

(22)
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where

P i(t) := Qi(t)αi(t) + Si(t)β−i(t), R
i(t) := Qi(t)βi(t) + Si(t)α−i(t),

P̄ i(t) := Qi(t)ᾱi(t) + Q̄i(t)(αi(t) + ᾱi(t))

+ Si(t)β̄−i(t) + S̄i(t)(β−i(t) + β̄−i(t)),

R̄i(t) := Qi(t)β̄i(t) + Q̄i(t)(βi(t) + β̄i(t)) + Si(t)ᾱ−i(t)

+ S̄i(t)(α−i(t) + ᾱ−i(t)),

Φi(t) := (Qi(t)γi,1(t) + Si(t)γ−i,1(t)),

Ψi(t) := (Qi(t)γi,2(t) + Si(t)γ−i,2(t)),

Qi(t) := qi,i(t) + q̃i,i(t), Q̄i(t) := q̃i,i(t) + q̄i,i(t),

Si(t) := si(t) + s̄i,i(t), S̄i(t) := s̄i,−i(t) + s̄Ei (t).

(23)

Now (21)–(23) gives us the equilibrium dynamics. In this fashion, it is
possible to solve LQ problems more general than (20).

D.5.2 MFTC

The optimally controlled dynamics are

dŶ i
t =

a2
i (t)r

−1
i (t)pit +

2∑
j=1

ci,jW
j
t

 dt+ Ẑi,1t dW 1
t + Ẑi,2t dW 2

t , Ŷ
i
T = yiT .

We make almost the same ansatz as before. Assume that there exists deter-
ministic functions αi, ᾱi, βi, β̄i, θi : [0, T ]→ R, i = 1, 2 and γi,j : [0, T ]→ R,
i, j = 1, 2, with terminal conditions

αi(T ) = 0, ᾱi(T ) = 0, βi(T ) = 0, β̄i(T ) = 0, γi,j(T ) = 0, θi(T ) = yiT (24)

such that

Ŷ i
t = αi(t)p

i
t + ᾱi(t)E[pit] + βi(t)p

−i
t + β̄i(t)E[p−it ]

+ γi,1(t)W 1
t + γi,2(t)W 2

t + θi(t).
(25)

By redefining Qi, Q̄i, Si, S̄i in (23),

Qi(t) := q1,i(t) + q2,i(t) + q̃1,i(t) + q̃2,i(t),

Q̄i(t) := q̃1,i(t) + q̃2,i(t) + q̄1,i(t) + q̄2,i(t),

Si(t) := s1(t) + s2(t) + s̄1,i(t) + s̄2,i(t),

S̄i(t) := s̄1,−i(t) + s̄2,−i(t) + s̄E1 (t) + s̄E2 (t),
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(22), (23) and (24), (25) gives us the optimally controlled state dynamics.

D.5.3 Simulation and the Price of Anarchy

Let T := 1, ξ := (y1
0, y

2
0) ∈ L2

F0
(Ω;Rd ×Rd) be preferred initial positions for

player 1 and 2 respectively, and

f it :=
1

2

(
ri(u

i
t)

2 + ρi(Y
i
t − E[Y −it ])2

)
, hit :=

νi
2

(Y i
0 − yi0)2.

In this setup, H1 and H2 are negative semi-definite if ri, ρi > 0, hi is con-
vex if νi > 0. In Figure 1 numerical simulations of MFTG and MFTC are
presented. In (a), the two players have identical preferences, but different
terminal conditions. The situation is symmetric in the sense that we ex-
pect the realized paths of player 1 reflected through the line y = 0 to be
approximately paths of player 2. In (c), preferences are asymmetric and as
a consequence, the realized paths are not each other’s mirrored images.

The central planner in a MFTC uses more information than a single
player does. In fact, in our example, γi,j(t) = 0 when i 6= j in the MFTG.
The interpretation is that in the game, player i does not care about player
−i’s noise, only her mean state. For the central planner however, γi,j is not
identically zero for i 6= j. This can be observed in (b), where the central
planner makes the player states evolve under some common noise.

In (c) we see an interesting contrast between the MFTG and the MFTC.
Player 1 (black) feels no attraction to player 2 (ρ1 = 0) while player 2 is
attracted to the mean position of player 1 (ρ2 > 0). In the game, player
1 travels on the straight line from (t, y) ≈ (0,−1) to its terminal position
(t, y) = (1,−2). Player 2, on the other hand, deviates far from its preferred
initial position at time t = 0, only to be in the proximity of player 1. In
the MFTC, the central planner makes player 1 linger around y = 0 for
some time, before turning south towards the terminal position. The result
is less movement movement by player 2. Even though player 1 pays a higher
individual cost, the social cost is reduced by approximately 33%. The social
cost J is approximated by

J(u1, u2) ≈ 1

N

N∑
i=1

j(ωi),
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(a)

y1T a1 c11 c12 r1 ρ1 ν1 y10

−2 1 0.3 0 1 1 1 N (0, 0.1)

y2T a2 c21 c22 r2 ρ2 ν2 y20

2 1 0 0.3 1 1 1 N (0, 0.1)
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MFTG state - player 1 (black), player 2 (red)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

-2
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0

1
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Y
1

, 
Y

2

MFTC state - player 1 (black), player 2 (red)

(b)

y1T a1 c11 c12 r1 ρ1 ν1 y10

−2 1 3 0 1 10 1 N (0, 0.1)

y2T a2 c21 c22 r2 ρ2 ν2 y20

2 1 0 3 1 10 1 N (0, 0.1)
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(c)

y1T a1 c11 c12 r1 ρ1 ν1 y10

−2 1 0.3 0 1 4 1 N (0, 0.1)

y2T a2 c21 c22 r2 ρ2 ν2 y20

2 1 0 0.3 1 0 1 N (2, 0.1)

Figure 1: Numerical examples: (a) symmetric preference, (b) single path sample,
(c) asymmetric attraction and initial position. Circles indicate the preferred initial
positions.
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where j(ωi) :=
∑2

j=1

∫ T
0 f jt (ωi)dt + hj(ωi). In (a) and (c), the outcomes

of j (circles for equilibrium control, stars for optimal control) are presented
along with the approximation of J (dashed lines) for N = 100. The optimal
control yields the lower social cost in both cases. This is expected, the general
inefficiency of a Nash equilibrium in nonzero-sum games is well known [18].
The price of anarchy quantifies the inefficiency due to non-cooperation, see
for static games [25, 26], for differential games [5] and for linear-quadratic
mean-field type games [20]. The price of anarchy in mean-field games has
been studied recently in [13, 11]. It is defined as the largest ratio between
social cost for an equilibrium (MFTG) to the optimal social cost (MFTC),

PoA := sup
(û1· ,û

2
· ) MFTG

equilibrium

J(û1
· , û

2
· )

min
ui·∈U i,i=1,2

J(u1
· , u

2
· )
.

Taking the parameter set of (a) as a point of reference, see Table 2, we
vary one parameter at the time and study PoA. The result is presented
in Figure 2. In the intervals studied, PoA is increasing in ρi and T and
decreasing in νi and ri. The reason is that the players become less flexible
when νi and/or ri are increased, and the improvement a central planner can
do decreases. On the other hand, an increased time horizon gives the central
planner more time to improve the social cost. Also, an increased preference
on attraction rewards the unegoistic behavior in the MFTC model.

Table 2: Parameter values in the symmetric case (a).

y1T a1 c11 c12 r1 ρ1 ν1 y10

−2 1 0.3 0 1 1 1 N (0, 0.1)

y2T a2 c21 c22 r2 ρ2 ν2 y20

2 1 0 0.3 1 1 1 N (0, 0.1)

183



Paper D

0 0.5 1 1.5 2

2

1.04

1.06

1.08

1.1

1.12

P
o
A

(a) Variation of ρ2 in [0.2, 2].
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(b) Variation of r2 in [0.2, 4].
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(c) Variation of ν1 in [0.2, 4].
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(d) Variation of T in [0.2, 2].

Figure 2: Numerical approximations (N = 5000) of the price of anarchy PoA.

D.6 Conclusions and discussion

Mean-field type games with backward stochastic dynamics, where the co-
efficients are allowed to depend on the marginal distributions of the player
states, have been defined in this paper. Under regularity assumptions nec-
essary conditions for a Nash equilibrium have been derived in the form of a
stochastic maximum principle. Additional convexity assumptions yield suf-
ficient conditions. In linear-quadric examples, player behavior in the MFTG
is compared to the centrally planned solution in the MFTC. The efficiency
of the MFTG Nash equilibrium, quantified by the price of anarchy, and its
dependence on problem parameters is studied.

The framework presented in this paper has many possible extensions,
towards both theory and applications. The theory for martingale-driven
BSDEs is now standard, and one could exchange W 1

· ,W
2
· throughout this

paper for two martingales M1
· ,M

2
· , possibly jump processes, and approach

the game with the theory of forward-backward SDEs. Indeed, the topic of
games between mean-field FBSDEs seems yet unexplored. These kind of
problems would have immediate applications in finance.

With our definition of U i, we have restricted ourselves to open loop
adapted controls in this paper. Other information structures, such as per-
fect/partial state- and/or law feedback controls, lagged or noise-perturbed
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controls are possible. Furthermore, both players have perfect information
about each other in this paper. Taking inspiration from for example [34, 33],
the access to information could be restricted, so that the players have only
partial information on states/laws. These types of extensions are interest-
ing both from the theoretical and applied point of view. Depending on the
application, the information structure of the problem will naturally change.

Exploring conditions for the MFTG to be a potential game, or an S-
modular game, can open a door for applications in for example interference
management and resource allocation [42, 46, 23] to make use of this frame-
work.

The following abbreviations have been used:

BSDE Backward stochastic differential equation
FBSDE Forward-backward stochastic differential equation
LQ Linear-quadratic
MFTC Mean-field type control problem
MFTG Mean-field type game
ODE Ordinary differential equation
PoA Price of Anarchy
SDE Stochastic differential equation

D.7 Appendix 1: Differentiation of f : P2(Rd)→ R

Derivatives of real-valued functions with domain P2(Rd) will be defined with
the lifting technique, outlined for example in [9, 10, 12]. Consider the func-
tion f : P2(Rd)→ R. We assume that our probability space is rich enough, so
that for every µ ∈ P2(Rd), there exists a square-integrable random variable
X whose distribution is µ, i.e., µ = L(X). For example, ([0, 1],B([0, 1]), dx)
has this property. Then we may write f(µ) =: F (X) and we can differenti-
ate F in Fréchet-sense whenever there exists a continuous linear functional
DF [X] : L2(F ;Rd)→ R such that

F (X + Y )− F (X) = E[DF [X]Y ] + o(‖Y ‖2) =: DY f(µ) + o(‖Y ‖2), (26)
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where ‖Y ‖22 := E[Y 2]. DY f(µ) is the Fréchet derivative of f at µ, in the
direction Y and we have that for Y ∈ L2(F ;Rd) and µ = L(X),

DY f(µ) = E[DF [X]Y ] =: lim
t→0

E[F (X + tY )− F (X)]

t
.

By Riesz’ Representation Theorem, DF [X] is unique and it is known [9] that
there exists a Borel function ϕ[µ] : Rd → Rd, independent of the version of
X, such that DF [X] = ϕ[µ](X). Therefore, with µ′ = L(X ′) for some
random variable X ′, (26) can be written as

f(µ′)− f(µ) = E[h[X](X ′), X ′ −X] + o(‖X ′ −X‖2), (27)

for all X ′ ∈ L2(F ;Rd). We denote ∂µf(µ;x) := h[µ](x), where x ∈ Rd, and
∂µf(L(X);X) =: ∂µf(L(X)), and have the identity

DF [X] = h[L(X)](X) = ∂µf(L(X)).

Example 12. If f(µ) = (
∫
Rd xdµ(x))2 then

lim
t→0

E[X + tY ]2 − E[X]2

t
= E[2E[X]Y ],

and ∂µf(µ) = 2
∫
Rd xdµ(x).

Example 13. If f(µ) =
∫
Rd xdµ(x) then ∂µf(µ) = 1.

The Taylor approximation of a measure-valued function is given by (27),
and we will write

f(L(X ′))− f(L(X)) = E
[
∂µf(L(X))(X ′ −X)

]
+ o(‖X ′ −X‖2).

Assume now that f takes another argument, ξ. Then

f(ξ,L(X ′))− f(ξ,L(X))

= E
[
∂µf(ξ̃,L(X);X)(X ′ −X)

]
+ o(‖X ′ −X‖2),

(28)

where the expectation is not taken over the tilded variable. Note that L(X)
is deterministic. In situations where the expected value is taken only over
the directional argument of ∂µf , we will write

E
[
∂µf(ξ̃,L(X);X)(X ′ −X)

]
=: E

[
(∂µf(ξ,L(X)))∗(X ′ −X)

]
. (29)
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The expected value in (28) is a random quantity because of ξ̃. Taking
another expected value, and changing the order of integration, leads to

E
[
Ẽ[∂µf(ξ̃,L(X);X)](X ′ −X)

]
,

where the tilded expectation is taken only over the tilded variable. The
notation for this will be

Ẽ[∂µf(ξ̃,L(X);X)] =: E [∗(∂µf(ξ,L(X)))] . (30)

D.8 Appendix 2: Proofs

D.8.1 Proof of Lemma 3

Let

b̃it :=
2∑
j=1

{
∂yj b̂

i
tỸ

j
t + E

[
(∂µj b̂

i
t)
∗Ỹ j
t

]}
+

2∑
j,k=1

∂zj,k b̂
i
tZ̃

i,j
t ,

then Ỹ i
t = −

∫ T
t b̃is + δ1b

i(s)1Eε(s)ds−
∑2

j=1

∫ T
t Z̃i,js dWs. An application of

Ito’s formula to |Ỹ 1
t |2 + |Ỹ 2

t |2 yields

2∑
i=1

|Ỹ i
t |2 +

∫ T

t

2∑
i,j=1

‖Z̃i,js ‖2Fds =

∫ T

t
2

2∑
i=1

〈Ỹ i
s , b̃

i
s + δ1b

i(s)1Eε(s)〉ds

+

2∑
i,j=1

∫ T

t
〈Ỹ i
s , Z̃

i,j
s dW j

s 〉.

(31)

Let D denote the largest bound for all the derivatives of b1 and b2 present.
By Jensen’s and Young’s inequalities,

2

2∑
i=1

〈Ỹ i
s , b̃

i
s〉 ≤

2∑
i=1

{
(6D + 16D2)|Ỹ i

s |2 + 2DE[|Ỹ i
s |2]
}

+
1

2

2∑
i,j=1

‖Z̃i,js ‖2F .
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The stochastic integrals in (31) are local martingales and vanish under an
expectation [38]. Therefore, with K0 := 8D + 16D2,

E

 2∑
i=1

|Ỹ i
s |2 +

1

2

2∑
i,j=1

∫ T

t
‖Z̃i,js ‖2F ds


≤ K0

∫ T

t
E

[
2∑
i=1

|Ỹ i
s |2
]
ds+ 2

∫ T

t
E

[
2∑
i=1

〈Ỹ i
s , δ1b

i(s)1Eε(s)〉

]
ds.

(32)

Let τ ∈ [0, T ], then

sup
(T−τ)≤t≤T

K0

∫ T

t
E

[
2∑
i=1

|Ỹ i
s |2
]
ds ≤ K0δ sup

(T−τ)≤t≤T
E

[
2∑
i=1

|Ỹ i
s |2
]
, (33)

and by Hölder’s and Young’s inequalities,

sup
(T−τ)≤t≤T

∫ T

t
E

[
2∑
i=1

〈Ỹ i
s , δ1b

i(s)1Eε(s)〉

]
ds

≤ sup
(T−τ)≤t≤T

∫ T

t

2∑
i=1

E
[
|Ỹ i
s |2
]1/2

E
[
|δ1b

i(s)1Eε(s)|2
]1/2

ds

≤
2∑
i=1

{
sup

(T−τ)≤t≤T
E
[
|Ỹ i
s |2
]1/2

}∫ T

T−τ
E
[
|δ1b

i(s)|2
]1/2

1Eε(s)ds

≤
2∑
i=1

δ

2

{
sup

(T−τ)≤t≤T
E
[
|Ỹ i
s |2
]}

+
1

2δ

(∫ T

T−δ
E
[
|δ1b

i(s)|2
]1/2

1Eε(s)ds

)2

.

(34)

By Assumption 5 and the definition of U1, we have for some K1 > 0,

1

2δ

(∫ T

T−δ
E
[
|δ1b

i(s)|2
]1/2

1Eε(s)ds

)2

≤ K1ε
2.

Plugging (33) and (34) into (32) yields

sup
(T−δ)≤t≤T

E

(1− (K0 + 1)δ)
2∑
i=1

|Ỹ i
t |2 +

1

2

2∑
i,j=1

∫ T

t
‖Z̃i,js ‖2F ds

 ≤ K1ε
2.
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For δ < (K0 + 1)−1, we conclude that

sup
(T−δ)≤t≤T

E

 2∑
i=1

|Ỹ i
t |2 +

2∑
i,j=1

∫ T

t
‖Z̃i,js ‖2F ds

 ≤ K2ε
2,

where K2 > 0 depends on δ, the bound D, the Lipschitz coefficient of bi

and the integration bound in the definition of U1. The steps above can be
repeated for the intervals [T − 2δ, T − δ], [T − 3δ, T − 2δ], etc. until 0 is
reached. After a finite number of iterations, we have

sup
0≤t≤T

E

 2∑
i=1

|Ỹ i
t |2 +

2∑
i,j=1

∫ T

t
‖Z̃i,js ‖2F ds

 ≤ K3ε
2,

where K3 depends on K2 and T . This is the first estimate in (8). The second
estimate follows from similar calculations.

D.8.2 Proof of Lemma 4

Integration by parts yields

E

 2∑
j=1

Ỹ j
0 p

1,j
0

 = −E

∫ T

0

2∑
j=1

Ỹ j
t dp

1,j
t + p1,j

t dỸ j
t + d〈Ỹ j

t , p
1,j〉tdt

 .
Assume that dp1,j

t = βjt dt+ σj,1t dW 1
t + σj,2t dW 2

t , then

2∑
i=1

Ỹ i
t dp

1,i
t + p1,i

t dỸ
i
t + d〈p1,i, Ỹ i〉t =

2∑
i=1

[
Ỹ i
t

(
βitdt+ σi,1t dW 1

t + σi,2t dW 2
t

)
+ p1,i

t

(
2∑
j=1

{
∂yj b̂

i
tỸ

j
t + E

[
(∂µj b̂

i
t)
∗Ỹ j
t

]
+

2∑
k=1

∂zj,k b̂
i
tZ̃

j,k
t

}
+ δ1b

i(t)1Eε(t)

)

+ σi,1t Z̃i,1t + σi,2t Z̃i,2t

]
dt+ (. . . )dW 1

t + (. . . )dW 2
t .
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Hence, the lemma is equivalent to that, under expectations, we have

− E

[∫ T

0

{
Ỹ 1
t β

1
t + Ỹ 2

t β
2
t

+ Ỹ 1
t

{
p1,1
t ∂y1 b̂

1
t + p1,2

t ∂y1 b̂
2
t + E

[
∗(∂µ1 b̂

1
t )p

1,1
t

]
+ E

[
∗(∂µ1 b̂

2
t )p

1,2
t

]}
+ Ỹ 2

t

{
p1,1
t ∂y2 b̂

1
t + p1,2

t ∂y2 b̂
2
t + E

[
∗(∂µ2 b̂

1
t )p

1,1
t

]
+ E

[
∗(∂µ2 b̂

2
t )p

1,2
t

]}
+ (p1,1

t ∂z1,1 b̂
1
t + p1,2

t ∂z1,1 b̂
2
t + σ1,1

t )Z̃1,1
t

+ (p1,1
t ∂z1,2 b̂

1
t + p1,2

t ∂z1,2 b̂
2
t + σ1,2

t )Z̃1,2
t

+ (p1,1
t ∂z2,1 b̂

1
t + p1,2

t ∂z2,1 b̂
2
t + σ2,1

t )Z̃2,1
t

+ (p1,1
t ∂z2,2 b̂

1
t + p1,2

t ∂z2,2 b̂
2
t + σ2,2

t )Z̃2,2
t

+ (p1,1
t δ1b

1(t) + p1,2
t δ1b

2(t))1Eε(t)

}
dt

]

= −E

[∫ T

0

2∑
i=1

(
Ỹ i
t

{
∂yi f̂

1
t + E

[
∗(∂µi f̂

1
t )
]}
− p1,i

t δ1b
i(t)1Eε(t)

)
dt

]
.

We match coefficients and get

βjt = −
(
p1,1
t ∂yj b̂

1
t + p1,2

t ∂yj b̂
2
t + E

[
∗(∂µi b̂

1
t )p

1,1
t

]
+ E

[
∗(∂µi b̂

2
t )p

1,2
t

])
+ ∂yj b̂

1
t + E

[
∗(∂µj b̂

1
t )
]

= −
{
∂yjĤ

1
t + E

[
∗(∂µjĤ

1
t

]}
,

σj,kt = −
(
p1,1
t ∂zj,k b̂

1
t + p1,2

t ∂zj,k b̂
2
t

)
.

D.8.3 Linear-quadratic MFTG: derivation of the ODE
system

Under the ansatz, the adjoint equation is
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dpi,it

=
{

(qi,i(t) + q̃i,i(t))Ŷ
i
t + (q̃i,i(t) + q̄i,i(t))E[Ŷ i

t ]

+ (si,1(t) + si,2(t)s̄i,i(t))Ŷ
−i
t + (s̄i,−i(t) + s̄Ei,1 + s̄Ei,2(t))E[Ŷ −it ]

}
dt

=:
{
Qi(t)Ŷ

i
t + Q̄i(t)E[Ŷ i

t ] + Si(t)Ŷ
−i
t + S̄i(t)E[Ŷ −it ]

}
dt

=
{
Qi(t)

(
αi(t)p

i,i
t + ᾱi(t)E[pi,it ] + βi(t)p

−i,−i
t + β̄i(t)E[p−i,−it ]

+ γi,1(t)W 1
t + γi,2W

2
t + θi(t)

)
+ Q̄i(t)

(
(αi(t) + ᾱi(t))E[pi,it ] + (βi(t) + β̄i(t))E[p−i,−it ] + θi(t)

)
+ Si(t)

(
α−i(t)p

−i,−i
t + ᾱ−i(t)E[p−i,−it ] + β−i(t)p

i,i
t

+ β̄−i(t)E[pi,it ] + γ−i,1W
1
t + γ−i,2W

2
t + θ−i(t)

)
+ S̄i(t)

(
(α−i(t) + ᾱ−i(t))E[p−i,−it ]

+ (β−i(t) + β̄−i(t))E[pi,it ] + θ−i(t)
)}
dt

=
{
pi,it

(
Qi(t)αi(t) + Si(t)β−i(t)

)
+ E[pi,it ]

(
Qi(t)ᾱi(t) + Q̄i(t)(αi(t) + ᾱi(t))

+ Si(t)β̄−i(t) + S̄i(t)(β−i(t) + β̄−i(t))
)

+ p−i,−it

(
Qi(t)βi(t) + Si(t)α−i(t)

)
+ E[p−i,−it ]

(
Qi(t)β̄i(t) + Q̄i(t)(βi(t) + β̄i(t))

+ Si(t)ᾱ−i(t) + S̄i(t)(α−i(t) + ᾱ−i(t))
)

+W 1
t (Qi(t)γi,1(t) + Si(t)γi,2(t)) +W 2

t (Qi(t)γi,2 + Si(t)γ−i,2)

+ θi(t)(Qi(t) + Q̄i(t)) + θ−i(t)(Si(t) + S̄i(t))
}
dt

=:
{
pi,it P

i(t) + E[pi,it ]P̄ i(t) + p−i,−it Ri(t) + E[p−i,−it ]R̄i(t)

+W 1
t Φi(t) +W 2

t Ψi(t)

+ θi(t)(Qi(t) + Q̄i(t)) + θ−i(t)(Si(t) + S̄i(t))
}
dt,

(35)
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and the expected value of pi,i· solves

d(E[pi,it ]) =
{
E[pi,it ](P i(t) + P̄ i(t)) + E[p−i,−it ](Ri(t) + R̄i(t))

+ θi(t)(Qi(t) + Q̄i(t)) + θ−i(t)(Si(t) + S̄i(t))
}
dt.

(36)

The initial conditions pi,i0 , E[pi,i0 ], p−i,−i0 , E[p−i,−i0 ] are given by a system of
linear equations, which is derived is the same way as (35) and (36). Applying
Ito’s formula to the ansatz, and using (35) and (36), we get

dŶ i
t =

(
α̇i(t)p

i,i
t + ˙̄αi(t)E[pi,it ] + β̇i(t)p

−i,−i
t + ˙̄βi(t)E[p−i,−it ]

+ γ̇i,1(t)W 1
t + γ̇i,2(t)W 2

t + θ̇i(t)
)
dt

+ αi(t)dp
i,i
t + ᾱi(t)d(E[pi,it ]) + βi(t)dp

−i,−i
t + β̄i(t)d(E[p−i,−it ])

+ γi,1(t)dW 1
t + γi,2(t)dW 2

t

=
{
pi,it

(
α̇i(t) + αi(t)P

i(t) + βi(t)R
i(t)
)

+ E[pi,it ]
(

˙̄αi(t) + αi(t)P̄
i(t) + ᾱi(t)(P

i(t) + P̄ i(t))

+ βi(t)R̄
−i(t) + β̄i(t)(R

−i(t) + R̄−i(t))
)

+ p−i,−it

(
β̇i(t) + αi(t)R

i(t) + βi(t)P
−i(t)

)
+ E[p−i,−it ]

(
β̇i(t) + αi(t)R̄

i(t) + ᾱi(t)(R
i(t) + R̄i(t))

+ βi(t)P̄
−i(t) + β̄i(t)(P

−i(t) + P̄−i(t))
)

+W 1
t

(
γ̇i,1 + αi(t)Φ

i(t) + βi(t)Φ
−i(t)

)
+W 2

t

(
γ̇i,2 + αi(t)Ψ

i(t) + βi(t)Ψ
−i(t)

)
+ θ̇i(t) + θi(t)

(
(αi(t) + ᾱi(t))(Qi(t) + Q̄i(t))

+ (βi(t) + β̄i(t))(S−i(t) + S̄−i(t))
)

+ θ−i

(
(αi(t) + ᾱi(t))(Si(t) + S̄i(t))

+ (βi(t) + β̄i(t))(Qi(t) + Q̄i(t))
)}
dt+ γi,1(t)dW 1

t + γi,2dW
2
t .

We can now match these dynamics with the true state dynamics and we get
the system of ODEs (22) and γi,j(t) = Ẑi,jt .
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Abstract

It is common for models of learning in games to make assumptions
so that either a deterministic model can be studied, or the resulting
stochastic dynamic is a finite Markov chain. However, in many settings
where a stochastic process is considered the assumptions necessary to
get a finite-state space model might lead to undesired modeling arti-
facts. With simulations we show how the assumptions in [25], a well-
studied model for stochastic stability, lead to unexpected behavior in
games without strict equilibria, such as Matching Pennies. Further-
more, we argue that this behavior should be considered a modeling
artifact. In this paper we propose a continuous-state space model with
recency bias that can converge to mixed equilibria. The model is simi-
lar in spirit to that of Young. We derive known properties of finite-state
space models for adaptive play for our model, such as the convergence
to and existence of a unique invariant distribution of the state process,
and the concentration of that distribution on minimal CURB blocks.
Then, we establish conditions under which the state process converges
to mixed equilibria inside minimal CURB blocks. While deriving the
results for the specific model considered, we develop a methodology
that is relevant for a larger class of continuous-state space learning
models.

Keywords: conventions, recency bias, learning mixed equilibria, min-
imal CURB blocks, stochastic stability
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E.1 Introduction

The general setting we consider is the evolution of social conventions as
introduced in [25]. We consider large populations, one for each player role,
from which players are randomly drawn to play a normal form game. Before
deciding which action to take the players get access to a sample of historical
interactions. The players use this sample to form beliefs about the other
players’ behavior, and thereafter responds to the mixed strategy induced by
that sample. Once they have played, the history is updated, new players are
sampled, and the process continues from the updated history.

History Expectations

Actions

The idea is that in many real life situations, for example when buying
a house, each player might not have played the exact game before, but has
knowledge about some, but not all, previous interactions and assumes that
the player interacting with her will behave similarly to how players have
historically behaved. The goal is to see which actions will be taken in the
long run, and therefore which stable conventions, if any, will arise.

To get results for the long run distribution of states of the process, it is
helpful if the implementation has two properties. The state should be given
by a Markov process, and the resulting process should be ergodic so that a
unique invariant distribution exists. In the original formulation of [25] this is
achieved by defining the state as finite memory of length m with the last m
interactions, and a small mistake probability ε > 0 with which a uniformly
random action is taken instead of a best reply. The space of possible length
m memories is finite, and ε > 0 ensures that it is possible to go from any
state to any other state. The resulting process is an ergodic finite state
Markov chain and by standard results has a unique invariant distribution
that can be studied.

Most of the work building on the original model contain this basic finite
memory and noisy action structure, and it is indeed well suited to study
the relative stability of different pure (i.e. strict) Nash equilibria or minimal
CURB blocks1. However, this state space is ill-suited to answer questions

1A subset of strategy profiles C is called Closed Under Rational Behavior if the best
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1 2

1 1,−1 −1, 1

2 −1, 1 1,−1

Figure 1: Matching Pennies

about behavior around mixed equilibria, since one then has to keep track of
the ordering of the history, and exhibits behavior around even simple mixed-
equilibria that is better viewed as a modeling artifact than as a realistic
description of behavior. The purpose of this paper is to show that by chang-
ing the structure of the state space, i.e. the history, we get a process that
converges to some minimal CURB configuration and behaves reasonably also
inside minimal CURB and around mixed Nash equilibria.

To better understand the limitations of the standard finite memory pro-
cess, consider perhaps the simplest normal form game with a unique mixed
Nash equilibrium: Matching Pennies.

Consider the case where the length of the histroy is m = 9, and both
players sample the whole history and play without a mistake. Assume that
the history contains four interactions where both players took action 1, fol-
lowed by five interactions where both took action 2. The row player will
then take action 2 and the column player action 1. However, since the in-
teraction that falls out of the history is one where the column player played
1, the sample to which the row player responds will not change until the 1:s
in the end of the history have all fallen out and the first interaction with a 2
falls out of the history. At that point, the history contains five interactions
where the column player played 1, so now the row player wants to play 1 as
well. However, by now all the interactions in the history are such that the
row player played 2. So for the coming five interactions they will both take
action 1.(

111122222

111122222

)
→

(
222222222

222211111

)
→

(
222211111

111111111

)
→

(
111111111

111122222

)
→ · · ·

The behavior in the next period depends as much on what falls out of the
history as what is added, and this generates the cycling behavior. The cycling

replies to any strategy profile with support in C is also in C. It is called a minimal CURB
block if it does not contain any strictly smaller CURB block [3].
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behavior does not only happen in this special case but is a general feature
observed when simulating the process.

Figure 2: A 10 000 period simulation of the finite memory dynamic on
matching pennies with m = 1000, k = 20, ε = 0.05. Initiated at the 50/50
equilibrium.

To address this problem we introduce a new dynamic that differs from
previous works in the structure of the history. In this dynamic, the history
is assumed to be infinite, but more recent interactions are more likely to
be sampled. The probability of sampling an interaction decreases with a
factor β, 0 < β < 1, for each step back in the history. This decrease
allows us to reduce the state to simply the sampling probabilities for the
different strategies while maintaining the Markovian property of the process
(i.e. the history). We can in a meaningful way analyze the process at a
finer level inside the minimal CURB blocks (and determine properties of the
distribution of play inside a minimal CURB block). A simulation of this
new process can be seen in Figure 3. The recency process stays in small
neighborhood of the mixed Nash equilibrium (0.5, 0.5).
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Figure 3: A 10 000 period simulation of the recency dynamic on matching
pennies with β = 0.999, k = 20, ε = 0.05.

We analyze the resulting state process with tools from the theory of
continuous state space Markov processes. The results and tools used here are
applicable to a larger set of processes than the specific example we consider,
and showing how to analyze such a population dynamic is in itself a relevant
contribution.

E.1.1 Related Literature

Already in his dissertation John Nash gave a second interpretation of the
Nash equilibrium, the mass action interpretation [19]. He considers a setting
where a large population is associated to each player role, and one player
per role is selected in each period to play the game, and that the individual
players accumulate empirical information on the relative advantage of the
different available pure strategies. He then argues, informally, that in such
a setting, the stable points correspond to Nash equilibria and those points
should eventually be reached by the process.

The mass action interpretation is appealing since its assumptions about
bounded rationality and repeated interactions are more credible than those
underlying the rationalistic interpretation built on assumptions of perfect
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rationality and common knowledge2. Furthermore, experimental evidence
clearly favors some kind of learning and adjustment over the rationalistic
motivation. The general result is that in a one-shot interaction, play rarely
corresponds to a Nash equilibrium, but if the players have a chance to learn
and adjust, play often (but far from always) moves to a Nash equilibrium.
See [8, Ch. 6] for an overview of experimental models and results.

Appealing as the motivation might be, the theoretical picture has turned
out to be considerably more complicated than indicated by Nash’s informal
argument and what many researchers might initially have thought. One of
the first, and most studied, models formalizing a setting similar in spirit
to the mass-action interpretation is that of fictitious play by Brown in [7].
Even though Brown thought fictitious play would in general converge to a
Nash equilibrium, it was shown in [23] that even in a game with a unique
Nash equilibrium there might only exist a stable cycle and no convergence
to the mixed equilibrium. In general, it is the case that if the process has a
stationary point, it must be a Nash equilibrium, but the existence of such a
stationary point is not guaranteed. See e.g. [14], [24], or [22] for overview
of such results. The general results that exist are not about convergence to
stable points, which would then normally correspond to Nash equilibria, but
convergence to stable sets. [21] show set-convergence results for evolutionary
dynamics and [2] for best reply dynamics. Similarly [17] and [26] show set-
convergence results for dynamics similar to those studied in this paper.

Smooth fictitious play, first introduced in [12], is a version of fictitious
play where players respond with a perturbed best response. In contrast to
the standard version of fictitious play, not only the empirical frequency but
also actual play can converge to a Nash equilibrium. In [4] and [16], global
convergence results are shown for some games with unique Nash equilib-
ria, including interior ESS, two-player zero-sum, supermodular and potential
games.

A downside with standard versions of both fictitious play and smooth
fictitious play is that the stepsize decreases with time, and the state moves
slower and slower. So the initial starting point is crucial, and when behavior
is cyclic the cycles take longer and longer time to complete. Introducing
some kind of recency, similar to that used in this paper, gives a dynamic
with constant stepsize, which for many applications is more natural. Such

2Especially since perfect rationality and common knowledge by itself only leads to
rationalizability but not all the way to Nash equilibrium.

206



Stochastic stability

dynamics are studied in [5], where the time average in unstable games is
studied, and [13].

The one class of dynamics for which there exists quite general results
for convergence to equilibrium rely on a combination of noisy behavior and
satisfaction. A given player randomly explores actions until she is satisfied,
e.g. her received payoff is higher than some threshold or close enough to
the maximum payoff observed. Then she keeps taking that action as long
as she is still satisfied. The exact setting and formulation of results vary
between the cited papers, but in general this kind of dynamic seems to
able to converge to a Nash equilibrium under quite general circumstances.
The unsatisfactory part of this class of dynamics is that players are in a
sense maybe too unsophisticated, at least if the game is known, and that
the path to equilibrium thus might be very long and somewhat unrealistic
[11, 20, 15, 6].

The existing literature building on [25, 26], has not focused on questions
about mixed equilibria, but instead focused on questions about speed of
convergence, e.g. [18], or improving tools for finding stochastically stable
subsets, e.g. [10], but to our knowledge no one has studied mixed equilibria
more carefully.

E.1.2 Summary and outline

Since we make considerable changes to the underlying model, and most cru-
cially the state-space, we cannot rely directly on any existing results for the
memory (state) process. In Section E.2 the new model is formalized and we
introduce the tools we need to analyze the process. We prove weak conver-
gence to a unique invariant distribution for a large class of memory processes
within our proposed model and that in the limit as the error-rate ε→ 0, the
invariant distribution will concentrate on the minimal CURB blocks of the
game. Once we have recovered these crucial results, we turn to the question
of behavior inside minimal CURB blocks that are non-singleton, and show
that for any generic game where the minimal CURB blocks are at most 2×2
play will eventually concentrate around Nash equilibria or, when the sample
size k is small, close to some point on the k-grid spanning the simplices which
is also close to the Nash equilibrium. Most proofs have been appended in
the end of the paper.
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E.2 The Model

We consider a two-player finite game G, iteratively played by two new players
drawn from large populations. The game has two asymmetric player roles, 1
and 2. The sets of pure strategies in the game are S1 and S2, containingm1 ∈
N and m2 ∈ N pure strategies respectively; the spaces of mixed strategies
are thus ∆ (S1) and ∆ (S2).

For σ−i ∈ ∆ (S−i), we will denote by BRi (σ−i) ⊂ Si the set of best
replies of player i to the mixed strategy σ−i. We identify ∆ (Si) with the
(mi − 1)-dimensional simplex, so that the space � (S) := ∆ (S1) × ∆ (S2)
endowed with its usual uniform distance |·| is compact.

E.2.1 Sampling strategies

Each play is recorded as a pair (s1, s2), with s1 ∈ S1 and s2 ∈ S2 the
strategies played by each player. Denoting s1 (t) and s2 (t) the strategies
played at time t, the history is thus a sequence of plays

((s1 (t) , s2 (t)))t∈Z .

Notice that for t < 0, the history is just some infinite history, coding for
fictional plays for the purposes of our mechanisms.

At each time t, each player of role i ∈ {1, 2} samples k ∈ N plays (with
replacement) from the history of the opposing player role −i. Each sample is
drawn independently and samples are drawn with bias towards more recent
plays in a geometric fashion. Namely, players of role i have a bias β ∈ [0, 1)
called the recency parameter, such that at time t the probability of selecting
the time period t− τ , τ ∈ {1, . . . , t}, is

(1− β)βτ−1.

Therefore, a play of the strategy s ∈ S−i will be sampled by player i with
total probability

p−i,s (t) = (1− β)

∞∑
τ=1

βτ−11s(s−i(t− τ)),

where 1s is the indicator function on s.
We will call p−i (t) :=

(
p−i,1 (t) , . . . p−i,m−i (t)

)
the state process of player

role −i at time t. It is a vector of sampling probabilities obtained by player
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i from player −i’s history and is an element of ∆ (S−i). The result of the
sampling is a random vector

(
n−i,1 (t) , . . . n−i,m−i (t)

)
of integers, following

a multinomial distribution with parameters k and p−i (t). For s ∈ Si, let−→
1i,s ∈ ∆ (Si) be the unit vector representing the pure strategy s ∈ Si, i.e.
a vector of of size mi with 0 everywhere except at position s, where it is 1.
From her sample, player i forms an empirical (average) opposing strategy
profile

D−i (t) :=
1

k

m−i∑
s=1

n−i,s (t)
−−→
1−i,s ∈ ∆ (S−i) . (1)

Player i now deems her opponent will play at turn t accordingly to the
mixed strategy D−i (t) and tries to play the best response to it. However,
player i can make a mistake. Player i’s error parameter (or mistake fre-
quency) ε ∈ (0, 1] indicates the probability she will fail to play a strategy
in BRi (D−i (t)), and instead plays, with uniform probability, an arbitrary
strategy in Si. If BRi (D−i (t)) is not a singleton, the realized action is
sampled uniformly from all the elements of BRi (D−i (t)). We denote the
outcome of the uniform sampling between all best replies to x ∈ ∆S−i by
B̂Ri(x) ∈ Si. The distinction we want to emphasize with this notation is
that BRi(x) is set-valued (the set of all best replies to x) while B̂Ri(x) is
Si-valued and random (one of the best replies has been randomly selected).

In the end, player i will play B̂Ri (D−i (t)), with D−i(t) obtained as
described above, with a probability of 1 − ε; and additionally, play any
strategy s ∈ Si with probability ε/mi. We complete this section by calling

B̃Ri (p−i) ∈ Si

the random choice of strategy obtained by a player i through the following
process:

1. Looking at a history where plays of strategies by the opposing role get
sampled with probabilities given by p−i;

2. Sampling k of them to form the empirical expectation D−i;

3. Actually playing the best response B̂Ri (D−i), except in a fraction ε
of the time when a randomly selected strategy is played.
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E.2.2 Run of the plays

At t = 0, a initial infinite history ((s1 (u) , s2 (u)))u∈Z− is given. At each
time t ∈ N0, two new individuals are assigned to the roles. They use same
value of the parameters k and ε. After sampling from the history with
recency parameter β, they play si (t) = B̃Ri (p−i (t)), i = 1, 2, where p−i (t)
is exactly the historical distribution of plays with recency bias. The realized
plays (s1 (t) , s2 (t)) are appended to the history, and the step restarts. The
exponential nature of sampling leads to the following important property of
the state process (p1 (t) , p2 (t)) ∈ � (S).

Proposition 1. The state process pi (t) ∈ ∆ (Si) obeys the equation

pi (t+ 1) = βpi (t) + (1− β)
−−−→
1i,si(t)

where si (t) = B̃Ri (p−i (t)) is drawn randomly according to the model.

The order of historical plays is not necessary to characterize the model,
since the vectors (p1 (t) , p2 (t)) ∈ � (S) capture all the relevant information.
It follows that the history of games, summarized by (p1(·), p2(·)), is a Markov
process over � (S), and its Markov transition kernel may be expressed as a
linear stochastic operator K. The operator K is analyzed further in Sec-
tion E.2.3 below. In particular, from the position (p1 (t) , p2 (t)) ∈ � (S), at
most m1m2 different points (p1 (t+ 1) , p2 (t+ 1)) may be reached. Condi-
tioned on p(t), for any s1 ∈ S1 and s2 ∈ S2 the point(

βp1 (t) + (1− β)
−−→
11,s1 , βp2 (t) + (1− β)

−−→
12,s2

)
will be reached when s1 (t) = s1 and s2 (t) = s2, which happens with proba-
bility

2∏
i=1

P
(
B̃Ri(p−i(t)) = si | p−i(t)

)
,

since players sample independently, and

P
(
B̃Ri (p−i (t)) = si

)
= (1− ε)P

(
B̂Ri (D−i (t)) = si

)
+ ε/mi, (2)

where we remember that D−i (t) ∈ ∆ (S−i) is a multinomial combination of
strategies (with parameters k and p−i (t)). Importantly, the probability in
(2) is a Lipschitz-continuous function of the state (p1 (t) , p2 (t)).
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Proposition 2. For i ∈ {1, 2}, the functions

p−i 7→ P
(
B̃Ri (p−i) = si

)
are Lipschitz over ∆ (S−i) for all for all si ∈ Si, with Lipschitz constants at
most (1− ε) km−i with respect to the norm ‖·‖∞ over ∆ (S−i).

E.2.3 The kernel K

The kernel K of our Markovian state process p will be defined in this section.
The state process takes values in the continuous set �(S) and therefore its
kernel is defined as a functional taking continuous real-valued functions on
�(S). The kernel is the continuous-state space equivalent of the transition
rate matrix in models with a discrete state space.

Let (Ω,F ,F,P) be an underlying filtered probability space. The filtra-
tion is the natural filtration of (p1 (t) , p2 (t) ; t ∈ N) and satisfies the usual
conditions. Let E := C (� (S) ;R) be the space of continuous real-valued
functions over � (S), endowed with the uniform norm ‖ · ‖∞. Let P(�(S))
denote the set of Borel probability measures on �(S).

We define K as the following linear operator from E to E

K : E → E

f (p1, p2) 7→
m1∑
s1=1

m2∑
s2=1

P
(
B̃R1 (p2) = s1, B̃R2 (p1) = s2

)
×

f
(
βp1 + (1− β)

−−→
11,s1 , βp2 + (1− β)

−−→
12,s2

)
.

(3)

From this definition comes the elementary properties of K.

Proposition 3. K is an operator from E to E. It is linear, continuous, and
stochastic.

E.3 Main Results

E.3.1 The unique probability measure invariant with
respect to K

The first thing we need to perform the subsequent analysis is to prove that
our Markovian state process actually has a unique invariant distribution. To
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do this we will make use of a newly developed theorem that relies on what
can be called Lipschitz-friendly operators [9, Thm. 17]. The full justification
has been passed on to the appendices.

The theorem itself is more general than what is needed for our goals and
is a contribution in itself. The result holds for any Markov process with
the same state space and recency-weighted state updating, as long as the
stochastic best response function is Lipschitz-continuous in the state, and
there is a non-zero lower bound ε > 0 with which any given strategy is
played in any state.

Theorem 4. Assume that the map

�(S) 3 p 7→ P(B̃R(p) = s) ∈ [0, 1],

is Lipschitz-continuous and uniformly bounded from below by ε > 0 for all
s ∈ S, and that the recency parameter β ∈

(
1− 1

max{m1,m2} , 1
)
. Then, for

every ν ∈ P(�(S)), there are c ∈ R+, λ ∈ (0, 1), and a probability measure
µ ∈ P(�(S)) such that

‖νKn − µ‖W ≤ cλn, (4)

where K is the kernel defined in (3) and ‖·‖W is the Wasserstein distance on
P(�(S)). Furthermore, µ is the unique probability measure invariant with
respect to K.

In other words, Theorem 4 says that for whichever initial distribution ν
that p(0) is drawn from, the distribution of the Markov process will converge
"geometrically uniformly" to the probability measure µ which is the unique
solution of µK = µ.

Examples of other best response functions B̃R than the one studied here
for which Theorem 4 applies are logit best reply, i.e.

P
[
B̃Ri(p) = si

]
=

exp(ηπi(si, p−i))∑
a∈Si exp(ηπi(a, p−i))

for some η > 0, or a model where k itself is a random parameter, or where
only robust best responses to the sample are considered.

E.3.2 Convergence to minimal CURB configurations

Before we turn to the question of convergence to a minimal CURB block,
one minor technical detail most be resolved. A minimal CURB block is
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a collection of strategy profiles C1 × C2 ⊂ S such that the best reply to
all mixed strategies in in the sub-simplex spanned by those strategies is
always inside the set, i.e. BR(σ) ⊂ C for all σ ∈ � (C), where � (C) :=
∆ (C1)×∆ (C2). However, since our agents only reply to samples of size k,
it might be the case that the mixed strategy from the simplex that has a
best reply outside a non-CURB block simply never is sampled. The game
below is a simple illustration of this point.

1 2

1 2,−100 −100, 2

2 −100, 2 2,−100

3 1, 0 1, 0

If k = 1 only best replies to pure strategies will ever be considered. If the
process initially has support only on the block {1,2}×{1,2}, the best reply
to any sample will be inside that block, even though 3 is the best reply
to most properly mixed strategies. We could call this smaller set of blocks
that are closed under best replies to any strategies on the k-lattice spanned,
�k(C) k-CURB blocks. In most settings, a relatively small k is enough for
the k-CURB blocks to coincide with the CURB blocks. In the rest of the
paper, we will speak of CURB blocks and by that mean k-CURB blocks.
Alternatively, we could have assumed that k is sufficiently large for them to
coincide.

In what follows, we first prove that the model concentrates on minimal
CURB blocks for general two player games. Then we prove convergence of
paths to an approximate mixed Nash equilibrium in the special case m1 =
m2 = 2 and a unique mixed Nash equilibrium. Finally, the results are
combined and we show that in general games with minimal CURB blocks
of size at most 2× 2, each containing a unique mixed Nash equilibrium, the
process spends arbitrarily long time, controlled by β, in a neighbourhood of
approximate Nash equilibria.

E.3.2.1 Concentration on minimal CURB blocks

The underlying idea of the proof is similar to the one used in results for the
original finite memory dynamics. Our case is complicated by the fact that
once a strategy has been played, it never truly disappears from memory but
always has a positive probability of being sampled. However, that probability
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decreases over time as long as the strategy is not played again. We will
therefore consider a neighbourhood Bδ(C), δ > 0 around strategy blocks
C := C1×C2 ⊂ S, defined as all pairs (p1, p2) in � (S) such that each of the
components puts at least 1− δ probability on the block.

Definition 5. The set Bδ(C) ⊂ � (S) is defined for any δ > 0 by

Bδ(C) :=

{
p = (p1, p2) ∈ � (S) |

mi∑
s=1

pi,s1Ci(s) ≥ 1− δ, i = 1, 2

}
.

We will analyze the time it takes for the state process to enter such
neighbourhoods, and the expected time it will spend in there once entered.
Let C denote the union of all minimal CURB blocks in the game. We will
show that expected time to go from Bδ(C)c to Bδ(C) is always bounded,
but the expected time spent inside Bδ(C) once entered goes to infinity as ε
goes to zero. This in turn will imply that as ε goes to zero, the invariant
distribution concentrates on the neighbourhood C, the union of all minimal
CURB blocks.

Theorem 6. Let C be the union of all the minimal CURB blocks of the game
and let Bδ(C) be the set given by Definition 5. It holds for all δ > 0 that as
ε→ 0, the invariant distribution µ∗ε concentrates on Bδ(C),

lim
ε→∞

µ∗ε (Bδ(C)) = 1.

Proof. The proof consists of three steps.

Step 1. Bounding the probability of reaching Bδ(C) in finite time.
To find a lower bound for the probability to go from an arbitrary point
p(t) ∈ Bδ(C)c to Bδ(C) in finite time we create a particular path of positive
probability that does exactly that. Let p(t) ∈ �(S) be given and let s1 ∈
S1 × S2 be the strategy profile played at in period t. Either s1 is a CURB
block, or the best reply set to s1 contains a strategy not in s1, BR(

−→
1s1) 6⊂ s1.

If the former statement is true this step of the proof is complete. That is
not always the case, therefore assume that we are in the case of the latter
statement, i.e. that the best reply set to s1 contains a strategy not in s1.
Then, the probability of both players only sampling s1 at time t + 1 is
bounded from below by (1−β)2k. Hence the probability of a strategy profile
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s2 ∈ BR(
−→
1s1), s2 6= s1, being played is bounded from below by

P
(
B̃R(p(t)) = s2 | p(t)

)
≥ (1− β)2k

m1m2
(1− ε)2.

Now let F2 be the smallest block F2 ∈ S1×S2 that contains {s1, s2}. Either
F2 is a CURB block or BR(∆(F2)) 6⊂ F2, in which case there is at least
one sample D of size k from F2 such that BR(D) 6⊂ F2. The probability
of sampling that particular D, and the best replies to D being such that
at least one of them is not in F2, is again bounded away from zero. Until
we have sampled a sequence of strategy profiles, each extending the set Fi,
such that Fi is a CURB block, there is always some sample with positive
sampling probability such that BR(D) 6⊂ Fi. The probability of playing a
strategy si which is a best reply to D which is not in Fi, si ∈ BR(D)∩ (Fi)

c,
is therefore bounded from below by

P
(
B̃R(p(t+ i− 1)) = si | p(t+ i− 1)

)
≥
(
βi−1(1− β)

)2k
m1m2

(1− ε)2.

Keep filling Fi, Fi+1, Fi+2, . . . with strategies from the CURB block in this
fashion, so that FT spans a CURB block and T ≤ m1 +m2 [17, Lemma 1].
To get a uniform lower bound, assume that T = m1 +m2 and that once Fi
is a CURB block the following T − i strategy profiles are inside the CURB
block. The probability of this progression of plays is bounded from below:
let E be the event that p(t+ T ) puts at most βT+1 mass outside the CURB
block spanned by FT , then

P (E) ≥
(
β2k
)(T−1)!

(1− β)2Tk

mT
1 m

T
2

(1− ε)2T .

Inside the CURB block spanned by FT , there is a minimal CURB block
which we denote by C = C1 ×C2. The probability of both players sampling
from C given the state p(t+ T ) (as described above) is greater or equal to

P ((D1/k,D2/k) ∈ �(C) | D from p(t+ T )) ≥
(
βT (1− β)

)2k
(1− ε)2.

Starting from p(t) ∈ Bδ(C)c, a sequence of plays that results in p(t + T +
T ∗) ∈ Bδ(C) is to play T strategies to fill FT followed by T ∗ strategies
from the minimal CURB block C. Conditional on p(t) ∈ Bδ(C)c and the
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aforementioned event E , the probability that p(t+T +T ∗) ∈ Bδ(C) ⊂ Bδ(C)
is bounded from below by

P
(

(D1, D2)(t+ T + i) ∈ �(C), i = 0, . . . , T ∗ − 1 | p(t+ T ) as above
)

≥
(
βT (1− β)(1− ε)

)2kT ∗
=: γ(ε, T, T ∗).

Now p(t + T + T ∗) gives at most βT ∗ probability to all strategy profiles
outside �(C). Therefore, we pick δ > 0 and let T ∗ ∈ N be such that βT ∗ < δ
and, summarizing the analysis in this step, we have derived a bound on the
probability of moving from any point p(t) ∈ Bδ(C)c to Bδ(C) in T +T ∗ steps.
We denote this bound by K and it is given by

KT+T ∗(p(t), Bδ(C))

≥
(
β2k
)(T−1)!

(1− β)2TK (1− ε)2T

mT
1 m

T
2

γ(ε, T, T ∗) =: K.

Step 2. Expected exit time from Bδ(C).
Once in Bδ(C), one of two things must happen for the process to leave. Either
one player makes a mistake or one player samples at least one strategy from
outside the minimal CURB block C the process is currently centered around.
So instead of calculating the time to the first exit, denoted τε, we calculate
the expected time until one of these two things happen the first time. Let
τ∗ε denote the time, starting from t = 0, until either a strategy is sampled
outside C or one player makes an ε-tremble. We denote the expression for
the probability that τ∗ε > t∗, t∗ ∈ N, with Qε(t∗),

Qε(t
∗) := P (τ∗ε > t∗ | p(0) ∈ Bδ(C)) =

t∗∏
t=0

(1− βtδ)2k(1− ε)2.

For the case ε = 0, we use the fact that
∑∞

t=0 β
tδ is convergent to conclude

that
∏∞
t=0(1 − βtδ)2k approaches a non-zero limit. Since Qε is decreasing

and non-negative,

lim
t∗→∞

Qε(t
∗) =

{
Q∗ ∈ (0, 1), if ε = 0,

0, if ε > 0.
(5)
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We can now derive a bound for τε, the expected time to exit from Bδ(C),

E [τε] ≥ E [τ∗ε ]

≥ E [τ∗ε | τ∗ε ≥ t∗, p(0) ∈ Bδ(C)]

× P(τ∗ε ≥ t∗ | p(0) ∈ Bδ(C))P(p(0) ∈ Bδ(C)))

≥ t∗Qε(t∗)ν(Bδ(C)),

where ν is the initial distribution of the state process and ν(Bδ(C)) is the
probability that p(0) ∈ Bδ(C). We know that the state process converges
weakly to the invariant distribution for all initial distributions and therefore
ν is any distribution on �(S) of our choice. Choosing ν as the distribution
of the constructed p(t+ T + T ∗) from above,

E[τε] ≥ t∗
t∗∏
t=0

(1− βtδ)2k(1− ε)2

= t∗(1− ε)2t∗Q0(t∗)

≥ t∗(1− ε)2t∗Q∗,

where t∗ is any positive integer. For a fixed ε, the function t∗ 7→ t∗(1− ε)2t∗

is maximized by t∗(ε) = −(2 ln(1 − ε))−1. There is therefore a decreasing
sequence of positive numbers (εj)

∞
j=1, tending to zero as j → ∞, such that

t∗(εj) is an integer and

E[τε] ≥ −
Q∗

2e ln(1− εj)
,

which diverges to ∞ as j →∞.

Step 3. Putting it all together.
We know that for any ε > 0 there exists a unique invariant probability
measure µ∗ε. We also have a lower bound for K(x,Bδ(C)) uniform over
x ∈ Bδ(C)c, and a lower bound for the expected time the process stays in
Bδ(C) once it has entered.

The probability given by the invariant distribution to the set Bδ(C) is at
least the sum over n of the probability of: the state process not being in it
(n + 1)(T + T ∗) steps ago, but in it n(T + T ∗) steps ago, and then staying
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there for at least n(T + T ∗) time steps,

1 ≥ µ∗ε(Bδ(C)) ≥
∞∑
n=0

(∫
Bδ(C)c

KT+T ∗ (x,Bδ(C)) dµ∗ε(x)

)
P (τε ≥ n(T + T ∗))

≥ µ∗ε (Bδ(C)c)K

( ∞∑
n=0

P
(

τε
T + T ∗

≥ n
))

≥ µ∗ε (Bδ(C)c)
K

T + T ∗
E [τ∗ε ] .

Since K > 0 increases as ε→ 0, E [τ∗ε ]→∞ as ε→ 0, and T + T ∗ does not
depend on ε, we conclude that µ∗ε (Bδ(C)c)→ 0 as ε→ 0.

The following corollary illuminates the usefulness of Theorem 6. To eval-
uate the asymptotic probability of any strategy block, it suffices to evaluate
its intersection with the neighbourhood of each minimal CURB block. Be-
low, the upper bound 1/2 for δ prevents two neighbourhoods to overlap.

Corollary 7. Let Cj, j = 1, . . . , J , be the minimal CURB blocks of the
game. For any measurable set σ ⊂ � (S) and for any 0 < δ < 1/2

lim
ε→0

µ∗ε(σ) = lim
ε→0

J∑
j=1

µ∗ε (Bδ(Cj) ∩ σ) .

E.3.2.2 Concentration around approximate Nash equilibria

This section is devoted to proving that the properties of the state process
implies the concentration of its distribution around Nash equilibria in any
two player game with only 1 × 1 and 2 × 2 minimal CURB blocks, each
containing a single Nash equilibrium. The 1× 1-case follows by the previous
section, so our focus here will be on the 2× 2-case.

Assumption 1. Each minimal CURB block Cj, j = 1, . . . , J , of the game G
is a 2× 2 block and contains exactly one completely mixed Nash equilibrium
N∗j .

Denote by n∗j = (n∗j,1, n
∗
j,2) ∈ �(Cj) the fixed point to the expected best

reply
E
[
B̃Ri(n

∗
j,−i)

]
= n∗j,i, i = 1, 2, j = 1, . . . , J, (6)
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which exists and is (minimal CURB-wise) unique by Lemma 13 in the ap-
pendix. Denote the unique fixed point of (6) when the players draw k samples
by n∗j{k}. Then, as is proven in Lemma 14, for large k it holds when ε > 0

that ‖N∗j − n∗j{k}‖ < 1/
√
k′ where k′ ∈ N is greater than a bound that

depends only on ε.

The following theorem is the concentration result for our state process
on two-player games satisfying assumption 1.

Theorem 8. Let the game satisfy assumption 1, let n∗j be the fixed point to
the expected pure best reply system (6) in the minimal CURB block Cj, and
let (p(t))t be the state process with recency parameter

β ∈
(

max

{
1− 1

max{m1,m2}
, β̄

}
, 1

)
,

where the lower bound β̄ ∈ (0, 1) depends only on k and n∗j and is defined in
(26). Then, for all η > 0, it holds that

lim
ε→0

lim
t→∞

P
(

min
j
‖p(t)− n∗j‖ < η

)
= 1−O(1− β),

Proof. We know from Theorem 6 that limε→0 µ
∗(Bδ(C)) → 1. Take any

point ρ in Bδ(Cj) for some j and let p(·) be a state process with p(t) = ρ.
Denote by τ∗ε (t) the time since either a strategy outside Cj was sampled or an
ε-tremble happened, counting backward from the current time t. This means
that for the τ∗ε (t) periods {t− τ∗ε (t), . . . , t} the state process has behaved as
a process with ε = 0 on only the subgame given by Cj . Let furthermore n
denote the mean process started at p(t− τ∗ε (t)),

 ni(t+ 1) = βni(t) + (1− β)E
[
B̃Ri(n−i(t))

]
,

ni(t− τ∗ε (t)) = pi(t− τ∗ε (t)), i = 1, 2, s > 0.
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Let Θ be the event Θ := {‖p(t)− n∗j‖ ≥ η + ‖nj(t)− n∗j‖}. We have

P(Θ) =

R∑
r=0

P (Θ | τ∗ε (t) = r)P (τ∗ε (t) = r)

+ P (Θ | τ∗ε (t) > R)P (τ∗ε (t) > R)

=
R∑
r=0

P (Θ | τ∗ε (t) = r)

×
{
P (τ∗ε (t) = r | p(t− r) ∈ Bδ(C))P (p(t− r) ∈ Bδ(C))

+ P (τ∗ε (t) = r | p(t− r) ∈ Bδ(C)c)P (p(t− r) ∈ Bδ(C)c)
}

+ P (Θ | τ∗ε (t) > R)P (τ∗ε (t) > R) .

(7)

Take now the limit t→∞ of the sum,

lim
t→∞

R∑
r=0

P (Θ | τ∗ε (t) = r)

×
{
P (τ∗ε (t) = r | p(t− r) ∈ Bδ(C))P (p(t− r) ∈ Bδ(C))

+ P (τ∗ε (t) = r | p(t− r) ∈ Bδ(C)c)P (p(t− r) ∈ Bδ(C)c)
}

=

R∑
r=0

P (Θ | τ∗ε = r)
{
P (τ∗ε = r | p(0) ∈ Bδ(C))µ∗ε (Bδ(C))

+ P (τ∗ε = r | p(0) ∈ Bδ(C)c)µ∗ε (Bδ(C)c)
}
.

Later, we will take ε → 0 and the term on the last line of the expression
above will vanish (by Theorem 6). Therefore, we continue to study only the
first term

R∑
r=0

P (Θ | τ∗ε = r)P (τ∗ε = r | p(0) ∈ Bδ(C)) . (8)

Lemma 15 together with the triangle inequality and Proposition 17 says that
for any η > 0,

P (Θ | τ∗ε = r) ≤ P (‖p(t)− nj(t)‖ ≥ η | τ∗ε (t) = r)

≤ cβ (βr + (1− β))

η2
.
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The probability that the process has behaved as a 2×2 minimal CURB game
for the past r time periods is

P (τ∗ε = r | p(0) ∈ Bδ(C))

= P (τ∗ε > r − 1 | p(0) ∈ Bδ(C))− P (τ∗ε > r | p(0) ∈ Bδ(C))

= Qε(r − 1)−Qε(r)

=
(

1− (1− βrδ)2k(1− ε)2
) r−1∏
t=0

(1− βtδ)2k(1− ε)2

=
(

1− (1− βrδ)2k(1− ε)2
)

(1− ε)2(r−1)Qo(r − 1)

≤
(

1− (1− ε)2

(1− ε)2
+ 2kβrδ

)
(1− ε)2r.

The last inequality follows from examining the remainder in the first order
Taylor expansion of (1− βrδ)2k around βrδ = 0. The remainder is

R1(βrδ) =
2k(2k − 1)(1− c)2k−2

2!
(βrδ)2

for some c ∈ [0, βrδ]. The remainder is non-negative, R1(βrδ) ≥ 0, for all
admissible values of β, δ, and c. Combining the estimates above, we can
bound (8),

R∑
r=0

P (Θ | τ∗ε = r)P (τ∗ε = r | p(0) ∈ Bδ(C))

≤
R∑
r=0

(
cβ (βr + 1− β)

η2

)
(1− ε)2r

(
1− (1− ε)2

(1− ε)2
+ 2kβrδ

)

=
cβ

η2

{(
1− (1− ε)2

(1− ε)2

) R∑
r=0

(βr + 1− β) (1− ε)2r

+ 2kδ
R∑
r=0

(βr + 1− β)βr(1− ε)2r

}
.
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All the series are convergent, letting R→∞ we get

lim
R→∞

R∑
r=0

P (Θ | τ∗ε = r)P (τ∗ε = r | p(0) ∈ Bδ(C))

≤ cβ

η2

{
1− (1− ε)2

(1− ε)2(1− β(1− ε)2)
+

1− β
(1− ε)2

+ 2kδ

(
1

1− β2(1− ε)2
+

(1− β)

1− β(1− ε)2

)}
.

Sending ε→ 0, we get

lim
ε→0

lim
R→∞

R∑
r=0

P (Θ | τ∗ε = r)P (τ∗ε = r | p(0) ∈ Bδ(C))

≤ cβ

η2

{
1− β + 2kδ

(
1

1− β2
+ 1

)}

≤ cβ

η2

{
1− β + 2kδ

(
1

1− β
+ 1

)}
.

Finally, choosing δ = (1− β)2/k, we get

lim
ε→0

lim
R→∞

R∑
r=0

P (Θ | τ∗ε = r)P
(
τ∗ε = r | p(0) ∈ B(1−β)2/k(C)

)
≤ 5cβ

η2
(1− β).

The term P(τ∗ε > R) = 0 vanishes as R → ∞ by the same analysis that
showed that Q∗ = 0 when ε 6= 0, cf. (5). Going all the way back to (7) and
plugging in our estimates yields

lim
ε→0

µ∗ε(Θ) ≤ 5cβ

η2
(1− β),

and hence

lim
ε→0

µ∗ε

(
{p ∈ �(S) | min

j
‖p− n∗j‖ < η}

)
≥ 1−O(1− β)

where the ordo O is uniform.
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Note that if the whole game is a 2 × 2-minimal CURB block, δ cannot
be defined. However, in that case Proposition 17 right away yields a bound
of order 1− β.

E.4 Conclusions and outlook

We conclude the paper with some reflections. The model with recency bias
proposed in this paper enjoys many of the theoretical properties of the orig-
inal model for evolution of social conventions, as shown by Theorem 4 and
Theorem 6. This paper then goes beyond what is known for the original
model when it comes to behavior within stable blocks of strategies, so-called
minimal CURB blocks. Theorem 8 provides conditions under which the
model with recency bias converges to Nash equilibria inside minimal CURB
blocks. To get to these results we choose to work in a continuous-state
space framework. We regard the history as a distribution over past plays
(with recency bias) instead a vector of the exact past history of plays and
this requires us to use other theoretical tools. However, the complication
is only mathematical, we have not observed any modeling artifacts in our
simulations.

As a final note, we formulate a conjecture: Theorem 10 together with
convergence properties of the state process yields concentration of the in-
variant distribution around Nash equilibria in any two player game. That
is, we expect that Assumption 1 can be relaxed.

Conjecture 9. Assume that the process defined by the restriction of the
game G to the subgame Cj, which is a minimal CURB block of any size, has
a unique completely mixed Nash equilibrium N∗j . Let µ∗ε|Cj be the invariant
distribution of the state process on the subgame. If it holds for all η > 0 that

lim
ε→0

µ∗ε

∣∣∣
Cj

(
p ∈ �(Cj) | ‖p− n∗j‖ < η

)
= 1−O(1− β), (9)

then

lim
ε→0

µ∗ε

(
p ∈ � (S) | min

j
‖p− n∗j‖ < η

)
= 1−O(1− β).

We believe the conjecture to be true and the reason is the following argument.
The set of probability measures is a compact space when equipped with the
Wasserstein metric, so instead of looking at limε→0 µ

∗
ε we may consider the
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compact set of accumulation points for µ∗ε, and take µ∗0 in that set which
must be an invariant distribution (not necessarily unique) for the game with
no deficiencies, i.e. with ε = 0. But without deficiencies, once the position
is close to a minimal CURB block, the probability of ever getting out is a
geometrically decaying series so by Borel-Cantelli almost surely the process is
eventually stuck in the minimal CURB block. Then, we apply the hypothesis
on the restricted game.

Further directions of research, after proving or disproving Conjecture 9,
include proving the estimate (9) for minimal CURB blocks of any size and
extending the analysis to games with minimal CURB blocks containing mul-
tiple Nash equilibria. Another interesting direction would be to replicate
Young’s analysis on which minimal CURB block or blocks the state process
concentrates on.

E.5 Proofs for m1 ×m2-games

E.5.1 Exponential history

Let us prove Proposition 1. Starting from the definition, we have

p−i,s (t+ 1) = (1− β)

∞∑
τ=1

βτ−11s(s−i(t− τ + 1)).

After index substitution v = τ − 1, splitting the term v = 0 yields

p−i,s (t+ 1) = (1− β)

(
1s(s−i(t)) +

∞∑
v=1

βv1s(s−i(t− v))

)
.

In other words,

p−i,s (t+ 1) = (1− β)β
∞∑
v=1

βv−11s(s−i(t− v)) + (1− β) 1s(s−i(t)).

We recognize the first term as p−i,s (t), so we are left for every s ∈ S−i with

p−i,s (t+ 1) = βp−i,s (t) + (1− β) 1s(s−i(t)),

which is the representation we seek.
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E.5.2 Lipschitz continuity

Here we are going to prove the Proposition 2. At the beginning there is a
sample with respect to probabilities p := p−i (t), yielding a random vector
N :=

(
n−i,1 (t) , . . . n−i,m−i (t)

)
of integers from the (discrete) probability

distribution

P
(
N =

(
n1, . . . nm−i

))
= k!

m−i∏
j=1

pnss
ns!

.

Each N will lead to an empirical opposing strategy profile D, that must
belong to some finite ’simplex grid’

∆(−i,k) :=

1

k

∑
s∈S−i

ns
−−→
1−i,s ; ns ∈ N0,

∑
s∈S−i

ns = k

 .

Now let us form mi subsets from ∆(−i,k) (which is finite), named ∆
(−i,k)
s for

s ∈ Si, where x ∈ ∆
(−i,k)
s whenever s ∈ BRi(x). Note that (∆

(−i,k)
s )s is not a

disjoint cover of ∆(−i,k) except in the special case when each x ∈ ∆(−i,k) has
a unique best response. Also, ∪s∆(−i,k)

s = ∆(−i,k) since the best response
set is never empty.

For a ≤ mi, the probability that B̃Ri (p) = a is going to be played is
thus obtained as follows :

• When deficiency occurs, which happens a fraction ε of the time, a is
played with a probability 1/mi, totalling ε/mi.

• When deficiency does not occur, which happens a fraction 1 − ε of
the time, the player selects its best response, so it will be a with the
probability P

(
D ∈ ∆

(−i,k)
a , B̂Ri(D) = a

)
.

In short,

P
(
B̃Ri (p) = a

)
= ε/mi + (1− ε)

∑
x∈∆

(−i,k)
a

P
(
B̂Ri(x) = a

)
P (D = x) . (10)

However D = x is an event of the shape N =
(
n1, . . . nm−i

)
, so considering

P (D = x) as a function of p1, . . . pn, we get

∂P
(
N =

(
n1, . . . nm−i

))
∂pb

= k!
pnb−1
b

(nb − 1)!

∏
j 6=b

p
nj
j

nj !
,
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with the convention 1/ (−1)! = 0 for continuity. So relatively to the norm
‖.‖∞ over ∆ (S−i), the Lipschitz constant of the probabilities P

(
D ∈ ∆

(−i,k)
a

)
are at most

m−i∑
b=1

∣∣∣∣∣∣
∂P
(
D ∈ ∆

(−i,k)
a

)
∂pb

∣∣∣∣∣∣ ≤
m−i∑
b=1

∑
x∈∆

(−i,k)
a

k!
pnb−1
b

(nb − 1)!

m−i∏
j=1
j 6=b

p
nj
j

nj !
.

However we know that∑
x∈∆(−i,k)

pnb−1
b

(nb − 1)!

m−i∏
j=1
j 6=b

p
nj
j

nj !
=

1

(k − 1)!
,

as this is the multinomial formula for k − 1 draws. Since ∆
(−i,k)
a ⊂ ∆(−i,k),

the Lipschitz constant of P
(
D ∈ ∆

(−i,k)
a

)
is at most

m−i∑
b=1

k!
1

(k − 1)!
= km−i.

Bounding P
(
B̂Ri(x) = a

)
from (10) by 1, the Lipschitz constant for

p 7→ P
(
B̃Ri (p) = a

)
is at most (1− ε) km−i.

E.5.3 Elementary properties of K

Now let us prove the Proposition 3. Knowing that by the next time step,
the players will have chosen strategies (s1, s2) ∈ S, let us denote

Γ ((p1, p2) , (s1, s2)) :=
(
βp1 + (1− β)

−−→
11,s1 , βp2 + (1− β)

−−→
12,s2

)
the next state of the history, (p1 (t+ 1) , p2 (t+ 1)) , when s is played from
pi (t) = pi. In particular, as a function of (p1, p2), Γ is Lipschitz of constant
β < 1. Also, let us call

σ ((p1, p2) , (s1, s2)) := P
(
B̃R1 (p2) = s1, B̃R2 (p1) = s2

)
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the probability of getting to Γ ((p1, p2) , (s1, s2)) from (p1, p2). Thanks to
Proposition 2 and the Lipschitz constant of P

(
B̃Ri (·) = s

)
being at most

(1− ε) km−i, the Lipschitz constant of σ seen as a function of (p1, p2) with
(s1, s2) constant is at most

(1− ε) k (m1 +m2) . (11)

For p = (p1, p2) ∈ A and s = (s1, s2) ∈ S, we have thus

Kf : p 7→
m1∑
s1=1

m2∑
s2=1

σ (p, s) f (Γ (p, s)) .

Since f is continuous by hypothesis, continuity of Kf comes immediately.
Therefore K operates from E to E.

Linearity is immediate when looking at the definition of K. Continuity
follows from linearity because K is bounded; indeed, when ‖f‖∞ ≤ 1, since
probabilities sum to 1 we also get ‖Kf‖∞ ≤ 1. K is positive, in the sense
that when f ≥ 0 everywhere, also Kf ≥ 0 everywhere on � (S). Finally,
noting by

−→
1 the unit function, K

−→
1 =

−→
1 for the same reason.

E.5.4 Dinetan’s theorem for Lipschitz-friendly operators

Let L ⊂ E := C(�(S);R) be the subset of Lipschitz functions over �(S),
endowed with the semi-norm

‖f‖L := sup
p 6=p′

(
|f (p)− f (p′) |
|p− p′|

)
.

Notice that L is a Banach space with the norm ‖f‖Z := max (‖f‖∞, ‖f‖L).
The following theorem is an adaptation of the result of [9].

Theorem 10. Let K be a linear, continuous, stochastic, Lipschitz-friendly
and infra-ergodic operator from E to E. Provided that K has no witness set
for any class, there are c ∈ R+, λ ∈ (0, 1), and a unique probability measure
µ ∈ P(�(S)) invariant with respect to K such that for every n ∈ N and
f ∈ L,

‖Knf −−→1 µf‖∞ ≤ cλn‖f‖Z (12)

As pointed out in [9], the natural norm on the topological dual of L with
the norm ‖ · ‖Z is the Wasserstein norm ‖ · ‖W . Restricted to probability
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measures, the Wasserstein norm translates to the topology of weak conver-
gence and this justifies the rewriting of (12) to the more easily interpreted
(4) in Theorem 4.

To prove the existence of a unique invariant probability measure, we
need to prove the different properties required in Theorem 10. Proofs of the
properties are found below. We want to emphasize that we only need some
quite general properties of our process to justify the result. So checking
the result for other processes with the same state space should be easy.
Specifically, we need a lower bound for the probability for any pure strategy
to be played, which e.g. a logit best reply function has for a finite game,
and that the best reply function has certain Lipschitz continuity properties.
So any stochastic process with the same state space and the same updating
conditional on the strategies being played has a unique invariant distribution
if for all si ∈ Si and i ∈ {1, 2} it holds that

min
p−i∈∆(S−i)

P
(
B̃Ri(p−i) = si

)
> ε

for some constant ε > 0 and P
(
B̃Ri(·) = si

)
is Lipschitz continuous.

The continuity, stochasticity, and linearity have already been proved.
The infra-ergodicity is proved in Section E.5.6 and comes from the fact that
every pure strategy has positive probability of being played in every period,
so it is possible to get from any state p to any open subset of �(S) in finite
time. The non-existence of witness-sets is true since the state space � (S) is
connected.

Remark 11. An operator from E to E is compact if it sends the unit ball
in E to a compact set. Viewing K as an operator on E, as in (3), it is a
non-compact operator. Indeed, K sends the unit ball in E to a squeezed unit
ball in E, which is non-compact. This is actually the case for all operators
from E to E containing integration with respect to point masses. The non-
compactness of K is the reason the standard version of the Krein-Rutman
theorem cannot be applied, and why we apply Dinetan’s version.

E.5.5 K is Lipschitz-friendly

We recall that K is Lipschitz-friendly when there are λ+ > λ− ∈ R+ such
that for every f ∈ E+ (non-negative continuous functions on�(S)) satisfying
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‖f‖L ≤ λ+ and ‖f‖∞ ≤ 1, it holds that ‖Kf‖L ≤ λ− and ‖Kf‖∞ ≤ 1. The
norm ‖ · ‖L is defined in Section E.5.4.

Let f ∈ E+ hold these properties, let p, p′ ∈ � (S), and consider the
difference

Kf
(
p′
)
−Kf (p) =

∑
s∈S

σ
(
p′, s

)
f
(
Γ
(
p′, s

))
− σ (p, s) f (Γ (p, s)) . (13)

Here, let us use the identity

ab− cd =
1

2
(a+ c) (b− d) +

1

2
(a− c) (b+ d)

to transform the summand in (13) into

1

2

(
σ
(
p′, s

)
+ σ (p, s)

) (
f
(
Γ
(
p′, s

))
− f (Γ (p, s))

)
+

1

2

(
σ
(
p′, s

)
− σ (p, s)

) (
f
(
Γ
(
p′, s

))
+ f (Γ (p, s))

)
.

(14)

On the top row of (14), from Γ Lipschitz of constant β, we have∣∣f (Γ (p′, s))− f (Γ (p, s))
∣∣ ≤ ∥∥p′ − p∥∥∞ β‖f‖L.

Therefore we get∣∣∣∣∣∑
s∈S

(
σ
(
p′, s

)
+ σ (p, s)

) (
f
(
Γ
(
p′, s

))
− f (Γ (p, s))

)∣∣∣∣∣
≤
∑
s∈S

(
σ
(
p′, s

)
+ σ (p, s)

) ∥∥p′ − p∥∥∞ β‖f‖L
= 2β‖f‖L

∥∥p′ − p∥∥∞ .
The last equality holds since the sum is taken over a disjoint partition of the
space of outcome. From (11), we know that σ is Lipschitz continuous in its
first argument. To simplify notation, denote its Lipschitz constant by Lσ.
For the bottom row of (14) we then have the estimate∣∣σ (p′, s)− σ (p, s)

∣∣ ≤ Lσ ∥∥p′ − p∥∥∞ ,
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and we get ∣∣∣∣∣∑
s∈S

(
σ
(
p′, s

)
− σ (p, s)

) (
f
(
Γ
(
p′, s

))
+ f (Γ (p, s))

)∣∣∣∣∣
≤
∑
s∈S

Lσ
∥∥p′ − p∥∥∞ 2 ‖f‖∞

≤ 2Lσ ‖f‖∞m1m2

∥∥p′ − p∥∥∞ .
Let us denote c := max {1,m1m2Lσ} so that in the end we have∣∣Kf (p′)−Kf (p)

∣∣ ≤ (β‖f‖L + c ‖f‖∞)
∥∥p′ − p∥∥∞ .

Therefore, whenever ‖f‖∞ ≤ 1 and

‖f‖L ≤ λ+ :=
2c

1− β
,

the Lipschitz constant of Kf will be at most βλ+ + c =: λ− < λ+ by choice
of λ+. It follows that f is Lipschitz-friendly with these λ+ and λ−.

E.5.6 K is infra-ergodic

Let f ∈ E+\ {0} and p ∈ � (S). We will prove that there is n ∈ N such that
(Knf) (p) > 0, implying infra-ergodicity of K.

For i ∈ {1, 2}, j ≤ m−i, and t ∈ N, let ω−i,j,t := 1j (s−i (t)) be the
indicator of a play j by the opponent of player i at time t, so that

p−i,j (t) = (1− β)
∞∑
τ=1

βτ−1ω−i,j,t−τ .

We will call Σ(−i) := {0, 1}m−i×N the set of binary arrays, indexed by s ≤
m−i and t ∈ N, such that for every t there is exactly one s such that Σ

(−i)
s,t =

1. In other words, Σ(−i) represents the history for player −i, where a 1 at
the entry (s, t) indicates that s was played at time t. Likewise, for n ∈ N, we
will call Σ(−i,N) := {0, 1}m−i×N the set of binary arrays indexed by s ≤ m−i
and t ∈ {1, . . . N} obeying the same condition, in other words the history up
to time N .
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E.5.6.1 Approximative history

Let p−i ∈ ∆ (S−i). We are going to exhibit a sequence of plays of finite
length N , i.e. a ω ∈ Σ(−i,N) for some N ∈ N, such that the partial sums

p
(N)
−i,j := (1− β)

N∑
t=1

βt−1ω−i,j,t

fall close to p−i. Namely, we want to prove the following.

Lemma 12. Let p−i ∈ ∆ (S−i) and ε > 0. We assume that (1− β)m−i ≤ 1.
There are N−i ∈ N and ω−i ∈ Σ(−i,N) such that for every j ≤ m−i and
N ≥ N−i,

p
(N)
−i,j = (1− β)

N∑
t=1

βt−1ω−i,j,t ∈ [p−i,j − ε, p−i,j ] .

Proof. The following algorithm provides a proof of Lemma 12. Start by
setting p

(0)
−i,j = 0 for every j, and ω−i to the empty array of dimensions

0 and m−i. Define N−i as the smallest N ∈ N such that βN < ε. For
t ∈ {1, . . . N−i}, repeat the following steps :

1. Look for j ≤ m−i such that p−i,j − p(t−1)
−i,j is maximal, and call any of

these pure strategies a.

2. Append at the end of the array ω−i the values ω−i,a,t = 1 and ω−i,j,t = 0
for j 6= a.

3. Compute p(t)
−i,j accordingly to the updated history ω−i.

Return the final history ω−i and values p(N)
−i,j .

We are going to prove recursively that for every t ∈ N, we always have
p

(t)
−i,j ≤ p−i,j and

m−i∑
j=1

p
(t)
−i,j = 1− βt.

For t = 0 this is because p−i,j is non-negative and p
(0)
−i,j = 0. Assuming these

at time t, since the probabilities p−i,j add to 1, the maximum value among
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p−i,j − p(t)
−i,j must be at least βt/m−i. By definition, then ω−i,a,t+1 = 1 and

p
(t+1)
−i,a = p

(t)
−i,a + (1− β)βt ≤ p−i,j −

βt

m−i
+ (1− β)βt.

Therefore, since (1− β)m−i ≤ 1 as assumed, the right-hand side is also
bounded by p−i,j . As for other strategies j 6= a, since p(t+1)

−i,j = p
(t)
−i,j the

inequality p(t)
−i,j ≤ p−i,j still holds. Now we also know that

p
(t+1)
−i,j − p

(t)
−i,j = (1− β)βtω−i,j,t+1,

and since exactly one among the m−i bits ω−i,j,t+1 is 1, we have

m−i∑
j=1

(
p

(t+1)
−i,j − p

(t)
−i,j

)
= (1− β)βt.

The recursion hypothesis thus leads us to

m−i∑
j=1

p
(t+1)
−i,j = 1− βt + (1− β)βt = 1− βt+1,

which proves our properties by recursion. So in particular after time N−i,
by choice of N−i, for every N ≥ N−i we have

m−i∑
j=1

p
(N)
−i,j > 1− ε,

while p(N)
−i,j ≤ p−i,j for every j. Since

∑
j p−i,j = 1, this is possible only if

each p(N)
−i,j is at least p−i,j − ε, leading to the result.

E.5.6.2 Proof of ergodicity

Now let us look again at our f ∈ E+\ {0} and p ∈ � (S) from the begin-
ning of the proof. Since f is continuous, the set f−1 ((0,∞)) is open and
nonempty, therefore contains an open ball B centered on x ∈ � (S) of radius
ε > 0.
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Let us write x = (x1, x2) for xi ∈ ∆ (Si). We apply Lemma 12 to x1 and
to x2, yielding play records ω1 and ω2, and values p(N−i)

−i,j such that for every
j ≤ m−i and N ≥ N−i,

p
(N)
−i,j ∈ [p−i,j − ε, p−i,j ] .

So let us call N = max (N1, N2) and look for
(
KNf

)
(x). As is known,

(Kf) (x) =

m1∑
s1=1

m2∑
s2=1

σ (x, s) f (Γ (x, s))

is a convex combination of values of f at the points Γ (x, s) ∈ �(S) accessible
from x in the history dynamics, once s = (s1, s2) is played. In particular,
the probabilities σ(x, s) are bounded from below by η = ε/(m1m2) > 0.

The play records ω1 and ω2 up to time N are now read in reverse time
order. At each time step t ∈ {0, . . . N − 1}, there is a probability at least η2

that player 1 chooses the strategy a ≤ m1 given by ω1,a,N−t = 1, and player
2 chooses the strategy b ≤ m2 given by ω2,b,N−t = 1. Therefore the plays
up to time N have a probability at least η2N > 0 of being dictated by ω1

and ω2. When this happens, thanks to the Proposition 1, a history having
started by (p1 (0) , p2 (0)) = p will now be at the position

(p1 (N) , p2 (N)) =
N∑
t=1

(
(1− β)βt−1−−−−−−→11,s1(N−t), (1− β)βt−1−−−−−−→12,s2(N−t)

)
+
(
βNp1 (0) , βNp2 (0)

)
.

Since si (N − t) is then the strategy a ≤ mi given by ωi,a,t = 1, in fact we
have

p−i,j (N) =
N∑
t=1

(1− β)βt−1ω−i,j,t + βNpi,j (0) . (17)

By Lemma 12, the choice of the records ω1 and ω2 makes the sum (17) to
take a value between x1−ε and x1. As we also have βN < ε and pi,j (0) ≤ 1,
we get pi,j (N) ∈ (pi,j ± ε), thus

‖(p1 (N) , p2 (N))− (x1, x2)‖ < ε.

In other words, it means that this point y = (p1 (N) , p2 (N)) ∈ B is ac-
cessible from p in N steps. It follows that in the convex combination of(
KNf

)
(p), there is the therm f (y) with a positive coefficient, therefore(

KNf
)

(p) > 0. This holding for every p and f shows that K infra-ergodic.
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E.6 Proofs for 2× 2 minimal CURB blocks

Before turning to the proof of Theorem 8 we present three lemmas. Consider
the following version of Assumption 1 for a single 2×2 minimal CURB block.

Assumption 2. m1 = m2 = 2 and the whole game is a minimal CURB
block, containing a unique Nash equilibrium N∗ that is completely mixed.

Generically, all 2× 2 games without pure Nash equilibria must have the
basic Matching Pennies structure. One player will be ’agreeing’ and the
other ’disagreeing’ in the sense that the best reply of the agreeing player is
to play the same strategy (0 or 1) as the disagreeing player. On the other
hand, the disagreeing player’s best reply is to not play the same strategy as
the agreeing player. Any other situation will generically yield at least one
minimal CURB block of size 1 × 1, contradicting the assumption. For the
rest of this section, we will refer to the player 1 and 2 as the agreeing and
the disagreeing player, respectively.

The following lemma is a consequence of the uniqueness of N∗.

Lemma 13. Let k (the number of samples) be an integer such that N∗1k 6∈ N
and N∗2k 6∈ N. Then there exists a unique fixed point n∗ = (n∗1, n

∗
2) ∈ � (S)

to the system E
[
B̃R1(n∗2)

]
= n∗1,

E
[
B̃R2(n∗1)

]
= n∗2.

(18)

Proof. The Nash equilibrium N∗ = (N∗1 , N
∗
2 ), which is unique by assump-

tion, defines ’cut-off’s Mi := bN∗i rkc, i = 1, 2, such that if more than M1 of
the agreeing player’s k samples from the disagreeing player’s history are 1,
he plays 1. The disagreeing player will play strategy 1 if more than M2 of
his k samples from the agreeing player’s history of plays are 0. Consider the
function

pk,M (x) := (1− ε)
k∑

i=M+1

(
k

i

)
xi(1− x)k−i + ε/2. (19)

Given that player history is in state (a, d), the probability that the agreeing
and disagreeing player plays strategy 1 is pa(d) := pk,M2(d) and pd(a) :=
1− pk,M1(a), respectively. We can now rewrite (18) as

pa(n
∗
2) = n∗1, pd(n

∗
1) = n∗2.
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The range of pa and pb is Iε := [ε/2, 1 − ε/2]. Therefore, by the strict
monotonicity and the continuity of pa and pd, we may rewrite (18) again,
now as

(pa ◦ pd) (n∗1) = n∗1, n∗1 ∈ Iε,
(pd ◦ pa) (n∗2) = n∗2, n∗2 ∈ Iε.

Note that since pa and pd are strictly increasing and decreasing, respectively,
both pa ◦pd and pd ◦pa are strictly decreasing functions from [0, 1] to [pd(1−
ε/2), pd(ε/2)] and [pa(ε/2), pa(1− ε/2)], respectively. Therefore

min{pa ◦ pd(ε/2), pd ◦ pa(ε/2)} ≥ min{pd(1− ε/2), pa(ε/2)} > ε/2,

and
max{pa ◦ pd(1− ε/2), pd ◦ pa(1− ε/2)}

≤ max{pd(ε/2), pa(1− ε/2)} < 1− ε/2.
Hence, since pa ◦ pd and pd ◦ pa are continuous, they intersect the straight
line x = y at a (function-wise) unique point in their respective images and
these intersection points are n∗1 and n∗2.

The k- and ε-dependent fixed point n∗ is in general not equal to the Nash
equilibrium N∗. However, as the following lemma shows, it tends to N∗ as
k →∞ when ε is small enough.

Lemma 14. Let n∗{k} denote the fixed point from Lemma 13 when k ∈ N
samples are drawn by each of the players. Assume that ε < max{N∗1 , N∗2 , 1−
N∗1 , 1 − N∗2 }. Then there is a bound k(ε) ∈ N, depending only on ε, such
that for all k′ ≥ k(ε), |N∗i − n∗i {k}| < 1/

√
k′ for all k > k′.

Proof. The sample Di from (1) is binomially distributed in the 2 × 2-game
setting. To be more clear, we denote the sample drawn by player −i from
player i’s history, when the history is in state n∗i {k}, by

Dk
i :=

1

k

k∑
j=1

ηi,jk.

The draws ηi,jk are Ber(n∗i {k})-distributed for j = 1, . . . , k and k ∈ N, and
ηi,1k, . . . , ηi,kk are independent. We denote the mean, variance, and skewness
of ηi,jk by µi,k, σi,k, and ρi,k, respectively,

µi,k = n∗i {k}, σ2
i,k = n∗i {k}(1− n∗i {k}), ρi,k =

1− 2n∗i {k}√
n∗i {k}(1− n∗i {k})

.
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By Lemma 13, n∗i {k} ∈ (ε/2, 1 − ε/2) and hence the skewness is finite and
the variance is bounded away from zero. For i = 1, 2, j = 1, . . . , k, and
k ∈ N we define the centralized draws η̄i,jk := ηi,jk − µi,k. Consider D̄k

i , a
centralized and scaled sample defined by the relation

Dk
i =

σi,k√
k
D̄k
i + µi,k.

Denoting by F̄i,k the distribution function of D̄k
i , the Berry-Essén theorem

tells us that
|F̄i,k(x) +N (x)| ≤ 3ρi,k/σ

3
i,k

√
k

where N is the standard normal distribution function. With the bounds for
the skewness and variance derived above, we have that F̄i,k(x) = N (x)+f̄i(k)
where f̄i ∈ O(1/(ε2

√
k)) and we can rewrite the system for n∗{k} as

n∗1{k} = E
[
B̃R1(n∗2{k})

]
= (1− ε)

(
P(Dk

2 > N∗2 ) +
1

2
P(Dk

2 = N∗2 )

)
+ ε/2

= (1− ε)
(

1− P(D̄k
2 ≤
√
k(N∗2 − n∗2{k})/σi,k)

+ C1P(D̄k
2 =
√
k(N∗2 − n∗2{k})/σi,k)

)
+ ε/2

= (1− ε)
(

1−N (
√
k(N∗2 − n∗2{k})/σ2,k) + f2(k)

)
+ ε/2,

n∗2{k} = (1− ε)
(
N (
√
k(N∗1 − n∗1{k})/σ1,k) + f1(k)

)
+ ε/2.

Reordering the equation system above yields

N (
√
k(N∗1 − n∗1{k})/σ1,k) =

n∗2{k} − ε/2
1− ε

+ f1(k),

N (
√
k(N∗2 − n∗2{k})/σ2,k) =

1− ε/2− n∗1{k}
1− ε

− f2(k).

(20)

We aim to prove that for all k greater than some bound k, ‖N∗−n∗{k}‖ ≤ δ
where δ is small and in a sense uniform. Ideally, we want δ = 1/

√
k and

that k depends only on ε. The result would then be: choosing a ε such that
the Nash equilibrium is located in an interior region defined by this ε, the
bound will hold for k(ε).
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To simplify notation, let ε′ := (ε/2)/(1 − ε). Apart from the 1/
√
k-

factor, the Berry-Essén bound can be made uniform over k by taking the
lowest possible standard deviation and the largest possible skewness. Call
this ε-dependent uniform bound C(ε). Consider a positive integer k(ε) such
that

A)
√
k(ε) > 2C(ε)/ε′,

B)
√
k(ε) > max

x∈N

{
N−1(1− ε′/2)

(x− ε)/4

}
, N := {N∗1 , N∗2 , 1−N∗1 , 1−N∗2 }.

These assumptions are crucial for the argument that is to follow, and the
set of integers satisfying them simultaneously is non-empty for all ε > 0.
The argument is necessary since we cannot take the limit k → ∞. The
calculations would simplify drastically in the limit, but they would be carried
out only in a formal sense. There are plenty of reasons that hinders us
from justifying the formal limit, the main one being the degeneracy of the
approximating distribution in the limit.

Suppose that there is a k ∈ N such that k > k(ε) ∈ N and |N∗1 −n∗1{k}| >
N−1(1− ε′/2)/

√
k(ε). By assumption B), N−1(1− ε′/2)/

√
k(ε) < 1/4 and

the lower bound for |N∗1 − n∗1{k}| is not a contradiction to N∗1 ∈ (ε, 1 − ε)
and n∗1{k} ∈ (ε/2, 1−ε/2) for small enough ε. Under the assumptions stated
in this paragraph, (20) says that one of the following two statements holds
true

n∗2{k} < ε/2 + (1− ε)
(
N
(
−
√
kN−1(1− ε′/2)/k(ε)

)
− f1(k)

)
,

n∗2{k} > ε/2 + (1− ε)
(
N
(√

kN−1(1− ε′/2)/k(ε)
)
− f1(k)

)
.

If

k > k(ε)

(
max

{
N−1 (1− ε′ − f1(k)) , N−1 (1− ε′ + f1(k))

}
N−1(1− ε′/2)

)2

, (21)

where ε′ := (ε/2)/(1 − ε), then n∗2{k} ∈ (0, ε) ∪ (1 − ε, 1). The inequality
(21) holds if

k > k(ε)

(
N−1(1− ε′ + C(ε)/

√
k(ε))

N−1(1− ε′/2)

)2

,

237



Paper E

since |f1(k)| ≤ C(ε)/
√
k < C(ε)/

√
k(ε). By assumption B), k(ε) dominates

(2C(ε)/ε′)2 and hence the inequality (21) holds true.
Consider the possibility that n∗2{k} ∈ (0, ε). Using assumption B), we

get that
N (
√
k(N∗2 − n∗2{k})/σ2,k) > 1− ε/4

and by (20) and assumption B), n∗1{k} < ε. Let ri,k := ε − n∗i {k}, i = 1, 2
be the rest, a sequence of numbers in (0, ε). Then

ε− r2,k = E
[
B̃R2(ε− r1,k)

]
= (1− ε)

(
N
(√

k(N∗1 − ε+ r1,k)/σ1,k

)
+ f1(k)

)
+ ε/2,

hence
ε′ −

r2,k

1− ε
− f1(k) = N (

√
k(N∗1 − ε+ r1,k)/σ1,k). (22)

By Berry-Essén and assumption A),

ε′ −
r2,k

1− ε
− f1(k) ≤ ε′ + C(ε)√

k(ε)
< 3ε′/2.

which is also a bound for the right hand side of (22),

N (
√
k(N∗1 − ε+ r1,k)/σ1,k) < 3ε′/2.

Solving for N∗1 and using the fact that 3ε′/2 < 1/2 leads to the contradiction

N∗1 < ε− r1,k + σ1,kN−1(3ε′/2)/
√
k < ε.

The other three cases, n∗ ∈ (0, ε) × (1 − ε, 1), n∗ ∈ (1 − ε, 1) × (0, ε), and
n∗ ∈ (1−ε)2, can be treated in a similar way. Each will lead to a contradiction
of the fundamental assumption ε < max{N∗1 , N∗2 , 1−N∗1 , 1−N∗2 }.

By contradiction, we have the result: for any bound k(ε) satisfying A)
and B) it holds that |N∗1−n∗1{k}| < N−1(1−ε′/2)/

√
k(ε) for all k > k(ε).

The factor N−1(1− ε′/2) in the final line of the proof will never cause us
a problem; if k(ε) satisfies assumption A) and B), then

k̄(ε) :=
(
N−1(1− ε′/2)

)2
k(ε) > k(ε)

will also satisfy assumption A) and B) and work as a bound.
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Consider the mean process n(·) = (n1(·), n2(·)) with dynamicsni(t+ 1) = βni(t) + (1− β)E
[
B̃Ri(n−i(t))

]
,

ni(0) = p(0), i = 1, 2.
(23)

The next lemma shows that as time increases, the mean process n tends to
the fixed point n∗.

Lemma 15. For all β ∈ (β̄, 1), where β̄ > 0 depends on k and n∗ and is
defined in (26) below, the fixed point n∗ is exponentially asymptotically stable
for the mean process (23), i.e. there exists positive constants M,λ (possibly
dependent on k, ε and n∗) such that

‖n(t)− n∗‖ ≤M‖n(0)− n∗‖ exp (−λt) .

Proof. Let fi, i = 1, 2, be the update of the mean process centralized around
the fixed point n∗,

ni(t+1)−n∗i = βni(t)+(1−β)E
[
B̃Ri(n−i(t))

]
−n∗ =: fi(n1(t), n2(t)). (24)

Linearization of (24) yields

n(t+ 1)− n∗ = F (n∗)(n(t)− n∗) + ρ(n(t)− n∗)‖n(t)− n∗‖2, (25)

where F is the Jacobian of (f1, f2),

F (n∗) =

[
β F1(n∗)

F2(n∗) β.

]
,

and
F1(n∗) := (1− β)(1− ε)p′a(n∗2),

F2(n∗) := −(1− β)(1− ε)p′d(n∗1),

and ρ is a continuous function that exists by the continuous differentiability
of fi, which follows from (19). The eigenvalues for F are β ± i(1 − β)(1 −
ε)
√
p′a(n

∗
2)p′d(n

∗
1). The linear system is uniformly asymptotically stable if

all the eigenvalues of F are located within the unit circle. Both pa and pd
are cumulative distribution functions, so their derivative is positive. The
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absolute value of each of the eigenvalues is β2 +(1−β)2(1−ε)2p′a(n
∗
2)p′d(n

∗
1),

which is smaller than 1 whenever

β̄ :=
p′a(n

∗
2)p′d(n

∗
1)− 1

p′a(n
∗
2)p′d(n

∗
1) + 1

< β < 1. (26)

Notice that β̄ does not depend on ε, all the terms containing ε cancel in
the expression above. Uniform asymptotical stability of n∗ for the linearized
system (25) implies exponential asymptotical stability of n∗ for the mean
dynamics [1, Ch. 5].

Consider now the variance process,

v(t) = (v1(t), v2(t)) := (V(p1(t)),V(p2(t))) .

Lemma 16. For all t ∈ N,

v1(t) + v2(t) ≤ cβ
(
βt + (1− β)

)
, (27)

where c is a positive constant that depends only on k.

Proof. As in Lemma 13, letM1 andM2 be the cut-offs defined by the unique
Nash equilibrium N∗, let n∗ be the fixed point (18), and let

pk,M (x) := (1− ε)
k∑

i=M+1

(
k

i

)
xi(1− x)k−i + ε/2.

Consider A∗, the ’shifted’ state space

A∗ = (A∗1, A
∗
2) := [−n∗1, 1− n∗1]× [−n∗2, 1− n∗2].

Extend the function d 7→ pk,M1(n∗2 + d) to A∗2/β and a 7→ pk,M2(n∗1 + a) to
A∗1/β by keeping the same expression, and define the functions gd and ga
over A∗1 and A∗2, respectively, by

gd(a) :=

∫ a

0

(
pk,M2(n∗1 + z/β)− (1− n∗2)

)
dz,

ga(d) :=

∫ d

0

(
pk,M1(n∗2 + z/β)− n∗1

)
dz.

The functions ga and gd are smooth for all M1,M2 and all k < ∞, and
ga(0) = gd(0) = 0. Furthermore, g′a(d) = pk,M1(n∗2 + d/β)− n∗1 and likewise
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differentiation of gd yields the integrand evaluated in the argument. Hence,
since pk,M1 and pk,M2 are strictly increasing, ga and gd are strictly convex.
We will make use the following estimates of ga and gd: there exists four (in
general different from each other) positive constants ca−, ca+, cd−, and cd+

such that

pk,M1(n∗2 + y) ≥ ca+y + n∗1, y ∈ [0, 1− n∗2],

pk,M1(n∗2 + y) ≤ ca−y + n∗1, y ∈ [−n∗2, 0],

pk,M2(n∗1 + y) ≥ cd+y + (1− n∗2), y ∈ [0, 1− n∗1],

pk,M2(n∗1 + y) ≤ cd−y + (1− n∗2), y ∈ [−n∗1, 0].

The estimates imply that for all (a, d) ∈ A∗,

ga(d) + gd(a) ≥ min{ca+, ca−, cd+, cd−}
1

2β

(
a2 + d2

)
. (28)

Now consider the shifted states A(t) := p1(t) − n∗1 and B(t) := p2(t) − n∗2.
The update of the shifted state is

A(t+ 1) = βA(t) + (1− β)
(
B̃R1(n∗2 +B(t))− n∗1

)
, A(0) = p1(0)− n∗1,

B(t+ 1) = βB(t) + (1− β)
(
B̃R2(n∗1 +A(t))− n∗2

)
, B(0) = p2(0)− n∗2.

For (a, d) ∈ A∗, let G(a, d) := gd(a) + ga(d). Expanding G with the Taylor
formula yields

G (A (t+ 1) , B (t+ 1))

= G (βA (t) , βB (t)) + g′d (βA (t)) (1− β)
(
B̃R1(n∗2 +B(t))− n∗1

)
+ g′a (βB (t)) (1− β)

(
B̃R2(n∗1 +A(t))− n∗2

)
+O

(
(1− β)2

)
= G (βA (t) , βB (t))

+ (1− β)

(
(pk,M2(n∗1 +A(t))− (1− n∗2))

(
B̃R1(n∗2 +B(t))− n∗1

)
+ (pk,M1(n∗2 +B(t))− n∗1)

(
B̃R2(n∗1A(t))− n∗2

))
+O

(
(1− β)2

)
,
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where the ordo is uniform since ga and gd are C2 over the compact state
space. However

E
[
B̃R1(n∗2 +B(t)) | Ft

]
= pk,M1(n∗2 +B(t)),

E
[
B̃R2(n∗1 +A(t)) | Ft

]
= 1− pk,M2(n∗1 +A(t)).

Therefore the line of order 1 has conditional expectation zero and we are left
with

E [G (A (t+ 1) , B (t+ 1)) | Ft] ≤ G (βA (t) , βB (t)) +M (1− β)2

for some uniform constant M . By convexity of ga and gd,

E [G (A (t+ 1) , B (t+ 1)) | Ft] ≤ βG (A (t) , B (t)) +M (1− β)2

By repeated use of the argument above together with the tower property of
conditional expectations we get

E [G (A (t+ 1) , B (t+ 1)) | Ft]

≤ βτ+1G (A (0) , B (0)) +
t∑

τ=0

βτM (1− β)2 .

So when t→∞,

lim sup
t→∞

E [G (A (t) , B (t))] ≤M (1− β) . (29)

From (28) and (29) it follows that

lim sup
t→∞

E
[
A2 (t) +B2 (t)

]
≤ 2βM

min{ca+, ca−, cd+, cd−}
(1− β) .

The proof is completed by simply noting that

v1(t) + v2(t) ≤ E
[
(p1(t)− n∗1)2 + (p2(t)− n∗2)2

]
= E[A2(t) +B2(t)].

As t→∞, the bound (27) is controlled by β: the right-hand side is con-
tinuous in β and as β → 1, it goes to zero. The following concentration result
is a straight away consequence of Lemma 16 and Chebyshev’s inequality.
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Proposition 17. For all η > 0,

P (‖p(t)− n(t)‖2 ≥ η) ≤
cβ
(
βt + (1− β)

)
η2

,

where c is a positive constant that depends only on k.
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