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Chapter 1

Introduction

1.1 The aim of this report

This report is an end product of a semester project in mathematics at EPFL, Lau-
sanne. No new theorems or other discoveries will be presented, all the material in
this report can be found in books and articles regarding percolation theory. What
this report aims to do is to give a complete explanation of the fundamental re-
sult that the critical probability in the square lattice is one half. A person who
is aquainted with mathematics on an undergraduate/graduate level but has never
heard of percolation before should be able to read this report. A few proofs are
moved to an appendix, since they don’t have anything to do with percolation the-
ory.

1.2 What is percolation?

Every morning I put my coffee pot on the stove, turn up the heat and wait for the
water to steam up through the grounded coffee beans. This movement or filtering
of a fluid through a porous material is what a physicist or chemist calls percolation.
The name for the mathematical model explored in this report originates from this
process. In 1957 the first percolation model was formulated by Broadbent and
Hammersley [1] for the question ”If a large porous stone is immersed in a bucket
of water, does the centre of the stone get wet?”.

For a start, imagine a lattice of channels through the rock. The lattice is made
out of vertices that are connected by edges, in some manner. We then choose a
parameter p ∈ [0, 1], depending on what type of rock we have and what type of
fluid we immerse it in, and declare the edges in the lattice open with probability
p, closed otherwise. The liquid is allowed to flow through an open edge. If the
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scale of the lattice is tiny compared to the size of the rock, we can think of the
lattice as infinite. Percolation theory treats questions about this situation. What
is the probability that there is an open path from a point in the lattice, most often
the origin, to infinity? What happens when we change p? What we will explore
is that for small p there are alot of closed edges and there will (almost surely) not
be an open path to infinity. But as we increase p a sharp threshold will occure
and suddenly we have positive probability of having an infinite open path. The
existance of this threshold makes percolation a rich subject, and makes it possible
for percolation to serve as a model for systems that undergo a phase transition.
In all cases of phase transition, there is a unit that becomes non-zero above (or
below) a critical point. For percolation the unit is the probability that there exists
an infinite cluster and the critical point called the critical probability. One example
of a physical system where phase transition occurs is a magnetic system, where the
unit is the spontaneous magnetisation per spin, and the critical point is the Curie
temperature Tc. When T < Tc the spontaneous magnetisation per spin becomes
non-zero and the magnetic system enters an ordered state. Another example is the
Van der Waal equation for fluids. The unit here is the difference between liquid
and vapour density, which becomes non-zero as the temperature goes below some
critical temperature. In both examples above and the percolation model we will
study in this report, the unit goes to zero continuously as it approaches the critical
point. Such a phase transition is called a second-order phase transition. There are
systems where the unit jumps as it approaches the critical point. An example is the
density of various materials when they undergo solid/liquid/gas transitions. These
phase transitions are called first-order phase transitions and can not be modeled by
our percolation model, but requires more elaborate percolation models.

1.3 Basic concepts

Percolation can be modeled on any kind of graph (honeycomb, tree, Bethe, ect.),
but in this report we will only study the cubic lattice. The cubic lattice is con-
structed by choosing Zd = {v = (v1, v2, . . . , vd) : vi ∈ Z, i = 1, 2, . . . , d} to be the
vertex set. We define the distance between two vertices in Zd to be

δ(v, v′) =

d∑
i=1

|vi − v
′
i |. (1.1)

By adding edges between all pairs v, v′ with δ(v, v′) = 1 we turn Zd into a graph
and δ to the standard graph theoretic distance. The edge set will be denoted E and
the cubic lattice will be denoted Ld = (Zd, E).
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Let p ∈ [0, 1]. Each edge in E is declared open with probability p, otherwise
closed, and all edges are taken to be independent of each other. With the porous
rock example in mind, an open edge allows passage for the water from one hole
(vertex v ∈ Zd) to another but a closed edge does not. This will give us a probability
measure on the set of subsets of Ld if we have a sample space and a σ-algebra. Let
an outcome in the sample space be the bond configuration 0/1-vector ω

ω : E → (ω(e1), ω(e2), . . . )

e 7→ ω(e)

A bond e ∈ E is open in the configuration ω if and only if w(e) = 1 and closed
otherwise. The sample space is the set Ω = {0, 1}E of all configurations ω. Let Σ

be the σ-field generated on Ω by finite dimensional cylinder sets

C(F, γ) = {ω ∈ Ω : ω( f ) = γ( f ), f ∈ F}

where F is a finite subset of Ed and γ ∈ {0, 1}F . Why this is the choice of σ-algebra
is motivated in the Appendix.

With p as above in mind, the relevant probability measure on (Ω,Σ) is the
product measure Pp induced by

Pp(C(F, γ)) =
∏
f∈F

γ( f )=1

p
∏
f∈F

γ( f )=0

(1 − p).

This is the underlying structure we will work on throughout this report. From it we
can define some important concepts in percolation theory.

For two vertices x, y ∈ Zd, we write x ↔ y if there exists an open path joining
x and y. Note that x↔ y is an event in Ω and can therefore be measured.

Definition 1.3.1 The open cluster Cx at x is the set of all vertices reachable along
open paths from the vertex x,

Cx = {y ∈ Zd : x↔ y}

The open cluster from the origin is abbreviated to C. Often we want to know what
the probability is that C is infinite. For this we define the percolation probability.

Definition 1.3.2 The percolation probability θ(p) is the probability that there will
exists an infinite open cluster containing the origin,

θ(p) = Pp(|C| = ∞)
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Later it will be shown that the event Pp|Cx| = ∞ is translation invariant in the lattice,
and hence the percolation probability is independent of the at what vertex x we are
looking.

The most interesting concern about the percolation probability is at what p it
is positive. Later on we will show that θ(p) is non decreasing in p. This motivates
the definition of the critical probability which is the subject of the main theorem in
this report.

Definition 1.3.3 The critical probability, pc, is

pc = sup{p : θ(p) = 0}

1.4 Examples

After the foundations in the previous section, it is time to get comfortable with
the percolation probability and the critical probability. The fundamental problem
in percolation theory is to find pc for a certain lattice, that is to ask the question
”when does percolation occur?”. It is not a trivial task to do this for a general
lattice, and it is not even proved that θ(pc) = 0 for all cubic lattices [2]. It makes
sense to ask this question though, and we will se why in the following thorem.

Theorem 1.4.1 The probability of an infinite open cluster on L2 is either 0 or 1.

Proof This theorem is proved by using Kologorov’s zero-one law. In order to make
use of Kolmogorov’s zero-one law we need to create a sequence of σ-algebras
on Ω generated by independent events such that the existance of an infinite open
cluster is in the tail of this sequence. Since our sample space is countable we can
enumerate all edges in some way. Now let Ai be the event that the ith edge is open
and

Σ′n = σ(A1, A2, . . . , An).

Our sought family is
(
Σ′n

)
n.

A finite number of closed edges can only disconnect a finite number of vertices
from the rest of Z2. Therefore the existance (or non-existance) of an infinite open
cluster can not be decided by a finite subset of all Ai’s. Therefore the event that
there is an infinite open cluster is in the tail of Σ′. By Kolmogorov’s zero-one law
it has then either probability 0 or probability 1.

�

The next example is about percolation on L, and the result is very intuitive.
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Proposition 1.4.2 When d = 1, pc(1) = 1.

Proof. Enumerate the vertices by their position in the lattice, i.e. the node to the
right of the origin is called 1, the next one 2, ect. For nonnegative integers i, let Ai

be the event that 2i ↔ 2i+1 − 1 and −2i+1 + 1 ↔ −2i happens. The probability for
this event is

Pp(Ai) = p2i
· p2i

.

When p < 1 the sum over all Ai’s is convergent,

∞∑
i=1

Pp(Ai) < ∞.

The Borel-Cantelli lemma then tells us that Pp(Aii.o.) = 0, in other words that
there must exist an i for which Ai does not happen with probability 1. Thus the
probability of an infinite component when p < 1 is zero.

�
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Chapter 2

Increasing events, inequalities
and influence

In this chapter we first identify a class of events that will occur in percolation again
and again as we go deeper into the theory, increasing events. Together with these
follow increasing random variables. For this class of events and random variables
we will prove some useful inequalities that in the end of this chapter give rise to
a theorem about the change of the number of infinite open clusers when we are
changing p. We will see that there is a sharp transition occurs, and this is the
threshold that was mentioned in the introduction.

2.1 Increasing events

Before we state the definition of an increasing event, let us develop an intuition
for what they are. Let the samples in our sample space have a partial order in the
following way. For two configurations ω1, ω2 ∈ Ω,

ω1 ≤ ω2 if ω1(e) ≤ ω2(e) ∀e ∈ E.

In other words, if an edge is open in ω1 it must be open in ω2. Consider now the
event A ⊂ Ω that the origin is contained in an infinite open cluster. If A happens
in a configuration ω, it will still happen if we open up edges that are closed in ω.
With the inequality defined above, this can be expressed as if there is an ω1 ∈ A
and an ω2 ∈ Ω such that ω1 ≤ ω2 then the set of open edges in ω2 is a superset of
the open edges in ω1, and thus ω2 ∈ A. This event is an example on an increasing
event.
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Definition 2.1.1 A non-empty subset A ⊂ Ω is called an increasing event if

ω1 ∈ A, ω1 ≤ ω2 ⇒ ω2 ∈ A.

A decreasing event is defined in the same way but with the inequality in the other
direction. Lets look at examples of increasing events.

Example 1. An important example of an increasing event is x ↔ y, i.e. the
event that there exists an open path from a vertex x to a vertex y. If the open path
exist in a configurationω and we open up edges inω, there open path will still exist.

Example 2. The event A = {ω ∈ Ω : |open edges in ω| ≥ k} is an increasing
event. If there are k open edges in ω, then if ω′ ≥ ω, there must be more or equally
many open edges in ω′. Hence ω′ is also in A and the event is increasing. Note
that if the ≥ condition in A is changed to for example =, ≤ or ”is even”, A will no
longer an increasing event.

If Ω is finite the ≥ condition can be exchanged to ”is finite” and A would still
be an increasing event, but not if Ω is infinite.

Example 3. An intersection of increasing events is an increasing event. If A and
B are increasing events and ω ∈ A ∩ B, then ω ∈ A and ω ∈ B. Since A and B are
increasing, all ω′ such that ω′ ≥ ω will be both in A and B and hence in A ∩ B.

Also a union of increasing events in an increasing event. If A is an increasing
event, we can replace A by any superset of A in the definiton of increasing events
and the definition would still hold. Our claim follows since the union is a superset
of its parts.

Using this definition and a technique called coupling, we will now prove a
result about the percolation probability.

Proposition 2.1.1 θ(p) is a non-decreasing function in p.

Proof. We will prove a result for increasing events and then apply it to |C| = ∞.
For each e ∈ E, define a random variable X(e) with a uniform distribution in [0, 1].
Define

αp(e) =

{
0, X(e) > p
1, X(e) ≤ p
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The state of each edge will be assigned from the value of αp. Generate two config-
urations like this, with probabilities p1 and p2. Define

ωp1 = αp1(e1)αp1(e2) . . . ,

ωp2 = αp2(e2)αp2(e2) . . . .

These events can be either 0 or 1, and by definition ωp1 ≤ ωp2 whenever p1 ≤ p2.
Therefore, for any increasing event A we have by definition ωp1 ∈ A ⇒ ωp2 ∈ A.
Our probability measure is the product measure, and hence we this general result
for increasing events

Pp1(A) ≤ Pp2(A)

Since θ(p) = Pp(|C| = ∞) and |C| = ∞ is an increasing event the proposition is
proved.

�

2.2 FKG inequality

The FKG inequality states that two increasing events have positive correlation.
From the previous chapter, we know that the event x ↔ y is an increasing event.
It is reasonable that if x ↔ y happens, then it becomes more likely for z ↔ w to
happen. This was proved for product measures by Harris [3]. A generalization for
non-product measures was done by Fortuin, Kasteleyn and Ginibre [4] and this is
where the inequality got its name from. We will use this inequality in the proof
of the main theorem, and since we work with product measures there we stick to
Harris’ version of the inequality.

Theorem 2.2.1 If A and B are increasing events then

Pp(A ∩ B) ≥ Pp(A)Pp(B). (2.1)

If X and Y are increasing random variables then

Ep [XY] ≥ Ep [X]Ep [Y] . (2.2)

Proof. It is sufficient to prove (2.2) because (2.1) then follows if we let the increas-
ing random variables be indicator functions of increasing events. In the first part
of the proof it will be shown by induction on n, the number of edges that X and Y
depend on, that (2.2) holds for all finite n. In the second part we take the step to
countably infinite n by using a martingale convergence theorem.
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Part 1. Suppose X and Y depend only on ω(e1), ω(e2), . . . , ω(en) and suppose
that n = 1. In this situation, that we will use as a basis for the induction, X and Y
do only depend on one edge e1 which has two states, 0 and 1. Let ω1 and ω2 be
two different configurations of Ω that differ on e1. Since X and Y are increasing
random variables the signs of X(ω1(e1))−X(ω2(e1)) and Y(ω1(e1))−Y(ω2(e1)) will
be the same. Therefore

[X(ω1(e1)) − X(ω2(e1))] [Y(ω1(e1)) − Y(ω2(e1))] ≥ 0.

Taking the sum over all values of ω1(e1) and ω2(e1), and multiplication with their
probability measure (which is positive) gives

0 ≤

1∑
ω1(e1)=0

1∑
ω2(e1)=0

[X(ω1(e1)) − X(ω2(e1))] [Y(ω1(e1)) − Y(ω2(e1))]

× Pp(ω(e) = ω1(e1))Pp(ω(e) = ω2(e1))

= ...

= 2
(
Ep [XY] − Ep [X]Ep [Y]

)
,

which proves the theorem when n = 1. Now assume that (2.2) holds for all n < k,
and assume that X and Y are increasing in ω(e1), ω(e2), . . . , ω(ek−1). Then from the
tower property of conditional expectation and the base case, we get

Ep [XY] = Ep
[
Ep [XY | ω(e1), . . . , ω(ek−1)]

]
≥ Ep

[
Ep [X | ω(e1), . . . , ω(ek−1)]Ep [Y | ω(e1), . . . , ω(ek−1)]

]
≥ Ep

[
Ep [X | ω(e1), . . . , ω(ek−1)]

]
Ep

[
Ep [Y | ω(e1), . . . , ω(ek−1)]

]
= Ep [X]Ep [Y] .

Part 2. Assume now that X and Y are increasing random variables with finite
second moments. Define

Xn = Ep [X | ω(e1), . . . , ω(en)] , Yn = Ep [Y | ω(e1), . . . , ω(en)] . (2.3)

Note that Xn and Yn in (2.3) are martingales w.r.t. the σ-algebra that they generate.
As shown in Part 1, Xn and Yn are increasing in ω(e1), . . . , ω(en) and therefore

Ep [XnYn] ≥ Ep [Xn]Ep [Yn] . (2.4)

This is the relation we would like to be preserved when we take the limit n → ∞.
We need a well known theorem about convergence of martingales to show this. A
proof can be found in [5].
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Theorem 2.2.2 If Xn is a martingale with finite second moment for all n, then there
exists a random variable X such that Xn converges to X almost surely and in mean
square.

A straight away consequence of Theorem 2.2.2 is that nothing happens with the
left hand side of (2.4) as we go in the limit,

Ep [Xn]→ Ep [X] , Ep [Yn]→ Ep [Y] as n→ ∞.

The right hand side requires us to use the triangle inequality and Cauchy-Schwartz
inequality.

Ep [|XnYn − XY |] ≤ Ep [|(Xn − X)Yn| + |X(Yn − Y)|]

≤

√
Ep

[
(Xn − X)2]Ep

[
Y2

n

]
+

√
Ep

[
X2]Ep

[
(Yn − Y)2]

→ 0 as n→ ∞.

Hence, if we take the limit of (2.4) we obtain (2.2).

�

We conclude this section with an application of the FKG inequality. It is a propo-
sition about the infinite open cluster.

Proposition 2.2.3 The probability that a vertex lies in an infinite open cluster is
translational invariant. That is, for any two vertices x, y ∈ Ld,

pc(x) = pc(y). (2.5)

Proof. If we know that x lies in an infinite open cluster, we can not say anything
about whether y lies in an infinite open cluster or not. But we have the relation

(x↔ y) ∩ (y↔ ∞) ⊂ (x↔ ∞).

Translating into probabilities, we get

Pp ( (x↔ y) ∩ (y↔ ∞) ) ≤ Pp(x↔ ∞).

But as shown in section 2.1, x↔ y and y↔ ∞ are increasing events. Therfore we
can apply the FKG inequality to the last equation,

Pp(x↔ y)Pp(y↔ ∞) ≤ Pp(x↔ ∞).

Since Pp(x ↔ y) > 0, the probability that y lies in an infinite open cluster is 0
whenever the probability that x lies in an infinite open cluster is 0. In critical prob-
abilities, this translates to pc(y) ≥ pc(x). If we swap x with y and do the whole
argument again, we get the opposite inequality pc(x) ≥ pc(y). The two inequalities
prove the proposition.

�

10



2.3 Influence

We can imagine the situation that the state of one or more edges can decide whether
an event happens or not. An example is the event 0 ↔ ∂B(n) where ∂B(n) is the
boundary of the 2n × 2n-square centered at the origin. Lets say we generate a per-
colation in the same manner as in Proposition 2.1.1, and 0 ↔ ∂B(n) is close to
happening. By this we mean, if we flip the state of a couple of edges we can make
the event happen. These ”influential” edges are what we will study in this section,
and they will lead us to theorems about sharp thresholds.

Grimmett [2] defines the influence of an element e ∈ E on the outcome of an
event A in two ways, conditional- and absolute influence. These two are equivalent
for increasing events under a product measure. This is always the situation in this
report, and therefore we will not distinguish between the definitions.

Definition 2.3.1 The influence of an element e ∈ E on an event A is

IA(e) = Pp(1A(ωe) , 1A(ωe)) (2.6)

where

ωe =

{
ω( f ) if f , e,
1 if f = e,

ωe =

{
ω( f ) if f , e,
0 if f = e.

In words, ωe is the configuration ω with the edge e forced to be open, and ωe with
e forced to be closed. For increasing events (2.6) can be rewritten into a more
convenient form.

Proposition 2.3.1 For an increasing event A

IA(e) = Pp(Ae) − Pp(Ae), (2.7)

where
Ae = {ω ∈ Ω : ωe ∈ A}, Ae = {ω ∈ Ω : ωe ∈ A}.

Proof. By definition, ωe ≥ ωe implies that ωe ∈ A whenever ωe ∈ A and thus
{1A(ωe) , 1A(ωe)} = {ω ∈ Ω : ωe ∈ A, ωe < A}. Using this together with De
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Morgan’s laws and the additivity of the probability measure we rewrite (2.6).

IA(e) = Pp
(
1A(ωe) , 1A(ωe)

)
= Pp

(
{ω ∈ Ω : ωe ∈ A, ωe < A}

)
= Pp

(
{ω ∈ Ω : ωe ∈ A} ∩ {ω ∈ Ω : ωe < A}

)
= Pp

(
{ω ∈ Ω : ωe ∈ A}C ∪ {ω ∈ Ω : ωe < A}C

)C

= 1 − Pp
(
{ω ∈ Ω : ωe ∈ A}C ∪ {ω ∈ Ω : ωe ∈ A}

)
= 1 −

[
1 − Pp

(
{ω ∈ Ω : ωe ∈ A}

)
+ Pp ({ω ∈ Ω : ωe ∈ A})

]
= Pp(Ae) − Pp(Ae).

�

A very non trivial theorem has been proven about the influence. We can write down
lower bounds for the total influence of all edges and the maximum influence of one
edge. The proof is long and uses techniques from other fields of mathematics.

Theorem 2.3.2 There exists a constant c ∈ (0,∞) such that if |E| = N ≥ 1 and if
A ⊂ Ω with probability Pp(A) ∈ (0, 1), then∑

e∈E

IA(e) ≥ cPp(A)(1 − Pp(A)) log
(

1
maxe IA(e)

)
. (2.8)

Furthermore there exists an edge e ∈ E such that

IA(e) ≥ cPp(A)(1 − Pp(A))
log(N)

N
. (2.9)

Proof. The proof will be divided into three parts. In the first part, we apply discrete
fourier analysis to pave the way for the second part of the proof. There we use a
result called the Hypercontractivity Lemma, often attributed to Bonami, Gross or
Beckner, to bound the influence from below. In the third part we show the second
assertion of the theorem.

Part 1. Define for functions from the sample space to the reals

< f , g >= Ep
[
fg

]
, f , g : Ω→ R. (2.10)

We are interested in a subset of these functions, namely the ones who take values
in {0, 1}. These functions are called Boolean functions. The Boolean functions on
Ω are in one to one correspondence to the power set of E via the relation
f = 1A ↔ A ∈ P(E). Grimmett [2] calls (2.10) for an inner product, but it is
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not an inner product since the space of Boolean functions is not a vector space.
Let us anyway show that (2.10) satisfies the definition of an inner product, with
the exception that is does not take elements from a vector space. Let f = 1A, g =

1B, h = 1C , A, B,C ∈ Ω and k ∈ R

• Ep
[
f 2

]
= Ep [1A1A] = Pp(A) ≥ 0 and only = 0 when A = ∅,

• Ep
[
fg

]
= Ep [1A1B] = Ep [1B1A] = Ep

[
g f

]
,

• Ep
[
k( f + h)g

]
= kEp

[
fg + hg

]
= kEp [1A1B + 1A1C] = k

(
Ep [1A1B] + Ep [1A1C]

)
=

k
(
Ep

[
fg

]
+ Ep

[
hg

])
.

Hence (2.13) induces a L2-norm,

|| f ||2 =
√
< f , f > =

√
Ep

[
f 2]. (2.11)

We will use the L2-norm later to write down Parseval’s relation.

The next step towards a working fourier analysis is to choose a set of basis func-
tions on the subsets of E. For F ⊂ E, let

uF(ω) =
∏
e∈F

(−1)ω(e) = (−1)
∑

e∈F ω(e), ω ∈ Ω (2.12)

Proposition 2.3.3 {uF}F⊂E is an orthonormal basis for Boolean functions on Ω.

Proof. Identify F as a subset of the natural number in the following manner. Enu-
merate the edges in E. We can now identify a subset F ⊂ E with a N-vector where
a one indicates that the corresponding edge is in F, and zero otherwise. For ex-
ample, F = (1, 0, 1, 0, . . . , 0) is a subset of two edges. For our purpose, we denote
F = {1, 3}. Then for a configuration ω, we have that

uF(ω) = (−1)F·ω = (−1)
∑n

i=1 Fiωi = (−1)
∑

i∈F ωi ,

where ωi is the ith coordinate of ω, which is either 0 or 1. The ”inner product”
between two us is thus

< uF(ω), uG(ω) >= Ep
[
(−1)

∑
i∈F ωi(−1)

∑
i∈G ωi

]
= Ep

[
(−1)

∑
i∈F ωi+

∑
i∈G ωi

]
. (2.13)

Now we are faced with two cases. If F = G then the exponent in the last term of
(2.13) becomes a square and the ”inner product” will be equal to 1. For the other
case, F , G, note that the probability of the exponent in the last term of (2.13) to

13



be even is the same as the probability of it to be odd. This can be seen for example
by looking at the expectation of

∑
i∈F

ωi. We get

Ep
[
(−1)

∑
i∈F ωi+

∑
i∈G ωi

]
= 1 · Pp(

∑
i∈F

ωi +
∑
i∈G

ωi is even)

+(−1) · Pp(
∑
i∈F

ωi +
∑
i∈G

ωi is odd) = 0.

�

Since {uF}F⊂E is an orthonormal basis, every Boolean function f : Ω → {0, 1} can
be expressed as a sum f =

∑
F⊂E

f̂ (F)uF where f̂ (F) =< f , uF >. In particular

f̂ (∅) =< f , u∅ >= Ep
[
f u∅

]
= Ep

[
f (−1)0

]
= Ep

[
f
]

and

< f , g > = Ep
[
fg

]
= Ep

∑
F⊂E

f̂ (F)uF

∑
G⊂E

ĝ(G)uG


= Ep

∑
F⊂E

f̂ (F)ĝ(F)u2
F


=

∑
F⊂E

f̂ (F)ĝ(F)Ep
[
u2

F

]
=

∑
F⊂E

f̂ (F)ĝ(F). (2.14)

We used the linearity of the expectation and the fact that u2
F is deterministic and

equal to one. By letting f = g in (2.14) we get Parseval’s relation

|| f ||22 =< f , f >=
∑
F⊂E

f̂ (F)2. (2.15)

Towards a formula for the total influence, we need to introduce one more definition.
Let fe(ω) = f (ω) − f (κeω) where κeω is the configuration ω with the state of e
flipped. Since the image of fe is {−1, 0, 1} it holds that | fe| = f 2

e . With B = {e ∈ E :
ω(e) = 1}, the Fourier coefficients to fe are given by

f̂e(F) = < fe, uF >=
1

2N

∑
ω∈Ω

fe(ω)uF(ω) =
1

2N

∑
ω∈Ω

( f (ω) − f (κeω)) uF(ω)

=
1

2N

∑
ω∈Ω

( f (ω) − f (κeω)) (−1)|B∩F|

=
1

2N

∑
ω∈Ω

f (ω)
(
(−1)|B∩F| − (−1)|(B∆{e})∩F|

)
.
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The last rewriting may seem taken out of the blue, but it has a nice structure. We
have to notice three things.

• If e < F then |B ∩ F| = |(B∆{e}) ∩ F|,

• if e ∈ F and e ∈ B then |(B∆{e}) ∩ F| = |(B − {e}) ∩ F| = |B ∩ F| − 1,

• and lastly if e ∈ F but e < B then |(B∆{e})∩F| = |(B∪{e})∩F| = |B∩F|+ 1.

This gives us

(−1)|B∩F| − (−1)|(B∆{e})∩F| =

{
0, e < F
2uF , e ∈ F

so that

f̂e(F) =

{
0, e < F
2 f̂ (F), e ∈ F

Now since IA(e) = Pp(Ae) − Pp(Ae) = Ep
[
fe
]

= || fe||22 we get

IA(e) = || fe||22 = 4
∑

F:e∈F

f̂ (F)2

and the total influence is thus∑
e∈E

IA(e) = 4
∑
F⊂E

|F| f̂ (F)2. (2.16)

Part 2. Time to bound the right hand part of (2.16) from below. The idea is to find
an inequality for large subsets, which will be easy, and to find another inequality for
small subsets, which will require some work. Let b be a constant, to be determined
later, that will be the size where we split small subsets from large ones. From (2.16)
we get a bound for large subsets∑

e∈E

IA(e) ≥ 4b
∑

F⊂E:|F|>b

f̂ (F)2 (2.17)

This was the easy inequality. The main tool in finding an inequality for small sets
will be the so called Hypercontractivity Lemma. To state it, we need to define
a general norm for our function space and the so called noise operator. For w ∈
[1,∞), the Lw-norm is defined as

||g||w = Ep
[
|g|w

]1/w , g : Ω→ R.

The main ingredient in the Hypercontractivity Lemma is the noise operator Tρ. It is
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called the noise operator because it smoothens functions that are otherwise noisy.
It is defined as follows. For ρ ∈ R, let

Tρg =
∑
F⊂E

ĝ(F)ρ|F|uF . (2.18)

The norm of the noise operator satisfies

||Tρg||22 =
∑
F⊂E

ĝ(F)2ρ2|F|. (2.19)

We are ready to state the Hypercontractivity lemma. The proof is presented in the
Appendix.

Lemma 2.3.4 For g : Ω→ 0, 1 and ρ > 0

||Tρg||2 ≤ ||g||1+ρ2 . (2.20)

Now let 0 < ρ < 1 and g = fe, where as before f = 1A. Then∑
F⊂E
e∈F

4 f̂ (F)2ρ2|F| =
∑
F⊂E

f̂e(F)2ρ2|F| = ||Tρ fe||22 ≤ || fe||
2
1+ρ2

= Ep
[
| fe|1+ρ2]2/(1+ρ2)

= || fe||
4/(1+ρ2)
2 = IA(e)2/(1+ρ2).

Let t = Pp(A) = f̂ (∅) and b as in the inequality for large subsets. Then

∑
e∈E

IA(e)2/(1+ρ2) ≥ 4ρ2b
∑
F⊂E

0<|F|≤b

f̂ (F)2 = 4ρ2b


∑
F⊂E
|F|≤b

f̂ (F)2 − t2

 . (2.21)

If we add together the inequalities (2.17) and (2.21) we get the total inequality

ρ−2b
∑
e∈E

IA(e)2/(1+ρ2) +
1
b

∑
e∈E

IA(e) ≥ 4
∑
F⊂E

f̂ (F)2 − 4t2 = 4t(1 − t). (2.22)

In the last equality we used Parseval’s relation (2.15). The final step is to choose
ρ = 1/2. Then, under the assumption that maxe IA(e) < 1∑

e∈E

IA(e)4/3 ≤

(
max

e
IA(e)

)1/3 ∑
e∈E

IA(e)

and (
2b(max

e
IA(e))1/3 + b−1

)∑
e∈E

IA(e) ≥ 4t(1 − t). (2.23)
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If we pick b such that 2b (maxe IA(e))1/3 = b−1, we get

2b+log(b)
(
max

e
IA(e)

)1/3
= 1

⇒ b + log(b) =
1
3

log
(
1/max

e
IA(e)

)
⇒ b ≥ A log

(
1/max

e
IA(e)

)
, A > 0.

If we insert this value into (2.23) we arrive to the sought inequality with c = 2A,∑
e∈E

IA(e) ≥
4t(1 − t)

2b−1 ≥ 2APp(A)(1 − Pp(A)) log
(
1/max

e
IA(e)

)
.

Part 3. The second assertion of the theorem is easily shown after noticing that

Pp(A)(1 − Pp(A)) ≤
1
2

min(Pp(A), 1 − Pp(A)).

Since
∑
e∈E

IA(e) ≤ N max
e

IA(e) we have that

max
e

IA(e) ≥
cPp(A)(1 − Pp(A)) log

(
1

maxe IA(e)

)
N

≥ ĉPp(A)(1 − Pp(A))
log(N)

N

where 0 < ĉ ≤
log(1/maxe IA(e))

log(N)
.

�

Interestingly, but not useful to us, this discrete theorem has a continuous analogue.
The only techniqual detail needed to prove it is the fact that every increasing subset
of the cube [0, 1]N is Lebesgue-measurable. The theorem is stated below without
proof.

Theorem 2.3.5 There exists a constant c ∈ (0,∞) such that if |E| = N > 1 and if
A ⊂ [0, 1]N is an increasing subset with Lebesgue measure in the interval (0, 1),
then ∑

e∈E

IA(e) ≥ cPLeb(A)(1 − PLeb) log
(

1
2 maxe IA(e)

)
.

Furthermore there exists an edge e ∈ E such that

IA(e) ≥ cPLeb(A)(1 − PLeb(A))
log(N)

N
.
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2.4 Russo’s formula

The last section gave us a result that can’t be considered as intuitive. Less surpris-
ing is the result of this section. It turns out that the change in probability of an
increasing event as a function of p is related to the total influence of all the edges
on this set.

Theorem 2.4.1 For any event A ⊂ Ω

d
dp
Pp(A) =

∑
e∈E

Pp(Ae) − Pp(Ae) =
∑
e∈E

IA(e) (2.24)

where Ω = {0, 1}E is a finite product space.

Proof. First of all, since Ω is a finite product space

Pp(A) =
∑
ω∈Ω

1A(ω)Pp(ω), A ⊂ Ω. (2.25)

Furthermore Pp is a product measure with density p so we have

Pp(ω) = pn(ω)(1 − p)N−n(ω), (2.26)

where n(ω) is the number of open edges in the configuration ω, n(ω) = |{e ∈ E :
ω(e) = 1}|, and N is the number of edges in E, N = |E|. In the following calculation
we use (2.25) and (2.26) to rewrite the left hand side of (2.24)

d
dp
Pp(A) =

d
dp

∑
ω∈Ω

1A(ω)Pp(ω)


=

d
dp

∑
ω∈Ω

1A(ω)pn(ω)(1 − p)N−n(ω)


=

∑
ω∈Ω

1A(ω)
d

dp

(
pn(ω)(1 − p)N−n(ω)

)
=

∑
ω∈Ω

1A(ω)
(
n(ω)

p
pn(ω)(1 − p)N−n(ω) −

N − n(ω)
p − 1

pn(ω)(1 − p)N−n(ω)
)

=
∑
ω∈Ω

(
n(ω)

p
−

N − n(ω)
p − 1

)
1A(ω)Pp(ω). (2.27)

What we would like to do is to sum over the edges in our lattice instead of the
configurations in our sample space. We need a clever rewriting. To do this we

18



introduce 1e, the indicator function that e is open. Notice that Pp(1e) = p ∀e ∈ E
and that n(ω) =

∑
e∈E

1e. In the next step we rewrite (2.27)

p(1 − p)
d

dp
Pp(A) =

∑
ω∈Ω

(n(ω)(1 − p) − N p + n(ω)p) 1A(ω)Pp(ω)

=
∑
ω∈Ω

(n(ω) − N p) 1A(ω)Pp(ω)

= Pp ((n(ω) − N p)1A(ω))

=
∑
e∈E

Pp(1e1A) − Pp(1e)Pp(1A). (2.28)

Now rewrite the probabilities in (2.28) in terms of Ae and Ae to reach an expression
for influence. For clarity, lets examine the probabilities one by one. We have seen
earlier in the proof that Pp(1e) = p. The other two require some calculation

Pp(1A) = Pp
(

[{ω ∈ Ω : ω(e) = 1} ∩ {ω ∈ Ω : ω ∈ Ae}]

∪ [{ω ∈ Ω : ω(e) = 0} ∩ {ω ∈ Ω : ω ∈ Ae}] )

= pPp(Ae) + (1 − p)Pp(Ae)

In the last step we used that all edges are independent.

Pp(1e1A) = Pp( {ω ∈ Ω : ω(e) = 1} ∩ {ω ∈ Ω : ω ∈ A} )

= Pp( {ω ∈ Ω : ω(e) = 1} ∩ {ω ∈ Ω : ω ∈ Ae} )

= pPp(Ae).

In the second equality we used that A = Ae ∪ Ae, but Ae is disjoint from the event
that e is open, so only Ae remains. In the last equality we again used that all edges
are independent. We plug the expressions for the three probabilities into (2.28)

p(1 − p)
d

dp
Pp(A) =

∑
e∈E

pPp(Ae) − p(pPp(Ae) + (1 − p)Pp(Ae))

=
∑
e∈E

p(1 − p)Pp(Ae) − p(1 − p)Pp(Ae).

The last step is to divide the last equation with p(1 − p) on both sides and use the
definition of influence. Russo’s formula, voila! �
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Chapter 3

The main theorem

Before we can prove that the critical probability pc of L2 is one half in section
3.3, we need a few more results. In section 3.1 we prove that if there is an infinite
open cluster, it is unique. Section 3.1 will be used to give an alternative proof that
pc ≥ 1/2. It is therefore not necessary for the understanding of the first version of
the proof of the main theorem and can be skipped. Section 3.2 though gives us the
last results we need to do the first version of the proof of the main theorem.

3.1 Uniqueness of the infinite open cluster

The question about the number of infinite open clusters is not only interesting for
us as a tool for doing the alternative proof. If we answer it we will get a deeper
understanding of how percolation behaves globally. This is definately not an ob-
vious theorem since there is a configuration ω ∈ Ω for which there are n infinite
open clusters, for all n ∈ N. For example, if we only let the edges on one of the
axis be open, we get a configuration with one infinite open cluster. If we open up
a parallel line to the open axis, we get a new configuration with two infinite open
clusters, and so on.

Theorem 3.1.1 If θ(p) > 0, then Pp(N = 1) = 1 where N = N(ω) is the number of
infinite open clusters.

The proof is rather long and an outline is well in place. The proof will be divided
into three parts. First some new notation is introduced to ease the calculations.
The second step is to rule out all cases where N = 2, 3, 4, . . . . This part is the
easy part and follows quickly from the observation that the number of infinite open
clusters must be constant. The third step is to rule out the case N = ∞. This part
has a heavy construction that takes a while to explain, but when it is done the result

20



follows from a contradiction. We will also need a lemma about translation invariant
events

Lemma 3.1.2 If an event is translation invariant, then its probability is either 0 or
1.

This can be proven with Kolmogorov’s 0/1-law. An outline: Let the σ-algebra Fn

be generated by all vertices withing distance n from the origin. A translation in-
variant event can be appproximated by something in Fn, for a certain n, but also by
something in k + Fn. For a large value on k these are independent. Since the event
”there exists N infinite open clusters” is a translation invariant event, this lemma
applies to it.

Proof. Part 1. So first some notation. Given a finite set of vertices B with con-
necting set of edges edges EB, let

• NB(0) be the number of open infinite clusters in the lattice when all edges in
EB are closed.

• NB(1) be the number of open infinite clusters in the lattice when all edges in
EB are open.

• MB be the number of open infinite clusters intersecting B.

Two things that will be used later in the proof are important to observe at this stage.
If all the edges in B are forced to be open, otherwise disjoint open infinite clusters
can be connected. From this the inequality NB(0) ≥ NB(1) follows. Also, if we en-
large B it will intersect more and more of the infinite open clusters until it intersects
all of them, thus by continuity of the probability measure MB → N as B→ Zd.

Part 2. The theorem is trivial for p = 0 or p = 1, hence let p ∈ (0, 1). The first
thing we shall show is that the number of infinite open clusters is almost surely
constant. As earlier, let N be the number of infinite open clusters. Lemma 3.1.2
implies that the event {N = k}, k ∈ {0, 1, 2, . . . ,∞}, has probability either 0 or 1
for each k. Since we cant have a different number of infinite open clusters at the
same time, the events {N = k} are disjoint. Furthermore, in their union we can find

all possible configurations of Ω and thus
∞⋃

k=0

{N = k} = Ω. Since Pp(Ω) = 1, we

deduce that there is some k for which Pp({N = k}) = 1 and thus the number of
infinite open clusters is almost surely constant.

Let D = D(n) be a tilted square with origo as center, D(n) = {x ∈ Zd : δ(0, x) ≤ n}.
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Here δ is the graph theoretic distance explained in chapter 1. Suppose there are k
infinite open clusters. The edge set ED is finite and thus every configuration on ED

has a strictly positive probability. This together with the almost sure constantness
of N gives

Pp(ND(0) = ND(1) = k) = 1, (3.1)

and therefore
Pp(MD ≥ 2) = 0 ∀ D (3.2)

If the size of D is increased the number of infinite openn clusters intersecting D
will not decrease. Thus MD is non-decreasing in n and it has a limit in n

lim
n→∞
Pp(MD(n) ≥ 2)→ Pp(N ≥ 2). (3.3)

Equation (3.1) and equation (3.3) together implies that Lemma 3.1.2 holds for
k ≤ 1. It remains to rule out the case when k = ∞.

Part 3. Assume, towards a contradiction, that Lemma 3.1.2 holds for k = ∞.
The trick in this part will be to construct a special kind of vertex, called a trifur-
cation. From the assumtion, we can then reach a contradiction about the growth
speed of the number of trifurcations. We begin with the definition of a trifurcation.

Definition 3.1.1 A vertex x is a trifurcation if

1. x lies in an infinite open cluster

2. x has exactly 3 open edges incident to it

3. removing x and its open edges splits the infinite open cluster intro exactly 3
infinite open clusters

The event that x is a trifurcation is denoted Tx and 1Tx is the indicator function as-
sociated with it. By translation-invariance of Tx, Pp(Tx) is constant for all vertices,
and we have

Pp(T0)|D(n)| = Ep

 ∑
x∈D(n)

1Tx

 (3.4)

If we can show that Pp(T0) > 0, (3.4) tells us that the number of trifurcations grow
like |D(n)|. To do it, we will use our assumption. Let MD(0) be the number of
infinite open clusters that intersect D when all edges in ED are closed. Note that
MD(0) ≥ MD since ND(0) ≥ N. By using the results in the end of Part 2 we can
arrive to the limit

Pp(MD(n)(0) ≥ 3) ≥ Pp(MD(n) ≥ 3)→ Pp(N ≥ 3) = 1, as n→ ∞ (3.5)
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In the last equality we used the assumption. By monotonicity of MD(0) we know
that there exists an m such that Pp(MD(n)(0) ≥ 3) ≥ 1/2. Note that {MD(n)(0) ≥ 3} is
independent of the configuration of the edges in ED(n). By the definition of MD(n)(0)
it will not change value if anything happens in ED(n). Also, if {MD(n)(0) ≥ 3} occurs
then there exists three vertices x, y, z ∈ ∂D(n) lying in distinct infinite open clusters
of E\ED(n).

Let ω ∈ Ω be a configuration which is also in {MD(0) ≥ 3}, that is ω gives us
three infinite open clusters when all edges in ED are closed. Pick x(ω), y(ω) and
z(ω) according to the previous paragraph.

Lemma 3.1.3 In ED(m) there exists three paths joining the origin to x(ω), y(ω) and
z(ω), and these paths can be chosen so that

• the origin is the unique vertex common to any two of the paths

• each path touches exactly one vertex in ∂D

Proof. Let J be the event that all the edges in the paths in Lemma 3.1.3 are open
and that all other edges in ED(m) are closed. Since D(m) is finite we can bound the
probability that J happens conditioned on {MD(m)(0) ≥ 3} away from zero.

Pp(J | MD(m)(0) ≥ 3) ≥ (min(p, 1 − p))|ED(m) | > 0.

If we multiply the left hand side with Pp(MD(m)(0) ≥ 3), by the definition of con-
ditional probability we get that

Pp(J ∩ {MD(m)(0) ≥ 3}) = Pp(J | MD(m)(0) ≥ 3)Pp(MD(m)(0) ≥ 3)

≥
1
2

(min(p, 1 − p))|ED(m) | > 0.

But the event J ∩ {MD(m)(0) ≥ 3} is a trifurcation, since we can choose the paths
in Lemma 3.1.3 as we like. There are more than one choice for a general m and
therefore the probability that the origin is a trifurcation has positive probability

Pp(T0) ≥ Pp(J ∩ {MD(m)(0) ≥ 3}) > 0.

�

We conclude from (3.4) and Lemma 3.1.3 that the number of trifurcations must
grow like |D(n)| as n→ ∞. But from the definition of a trifurcation we can quickly
arrive to the conclusion that the number of trifurcations must be bounded by the
number of elements in the boundary of D(n). Select a trifurcation in D(n), say
t1, and choose a vertex v1 ∈ ∂D(n) such that t1 ↔ v1 ∈ D(n). Select a second
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trifurcation t2 ∈ D(n). The definition of a trifurcation says that if we remove the
trifurcation and its open paths, then the infinite open cluster it lies in must split into
three infinite open clusters. Therefore, there must exists a vertex v2 ∈ ∂D(n) such
that t2 ↔ v2 ∈ D(n) and v1 , v2. This process can be continued for all trifurcations
in D(n), but we see that since they all need to be connected to a vertex in ∂D(n)
that no other trifurcation is connected to, the number of trifurcations is bounded by
|∂D(n)|.

Now |∂D(n)| grows like nd−1 as n increases, and the number of trifurcations is
bounded by this growth. But at the same time we showed that since Pp(T0) > 0 the
number of trifurcations also grows like |D(n)|, which is of order nd. This contra-
dicts that k = ∞. We are left with the options k = 0 or k = 1 and hence the infinite
open cluster is unique.

�

3.2 Crossing a rectangle

The crucial tool in the proof of the main theorem will be probabilities that rectan-
gles have open horizontal or vertical paths that cross them. We will denote an m×n
rectangle by Rm,n. Every rectangle Rm,n has a horizontal dual Rh

m,n and a vertical
dual Rvm,n. For m, n ≥ 2 the horizontal dual Rh

m,n is a m− 1× l + 1 rectangle, and the
vertical dual Rvm,n is a m + 1 × l − 1 rectangle.

Two important events in the proof of the main theorem concerns open paths
that cross Rm,n horizontally or vertically. For an ω ∈ Ω, an open horizontal cross-
ing of Rm,n is an open path joining one vertex on the left boundary of Rm,n to one
vertex on the right boundary. The standard notation for the event that Rm,n has such
a crossing is H(Rm,n). The event that Rm,n has a vertical crossing is defined analo-
gously and denoted V(Rm,n).

The following lemma is in some sense obvious. The proof is omitted, but can
be found in [6].

Lemma 3.2.1 Let Rm,n be a rectangle in the square lattice or its dual. For all
configurations of the bonds in Rm,n, exactly one of the events H(Rm,n) and V(Rh

m,n)
happens.

So the lemma states that either we have an open horizontal crossing of the rect-
angle, or we have an open vertical crossing of its dual. This makes much sense,
since if there is no open horizontal crossing, then there must be a closed vertical

24



crossing cutting off any open horizontal paths that ”tries” to reach the other side of
the rectangle. But this corresponds to an open vertical crossing of the dual.

From Lemma 3.2.1 we can deduce a couple of very useful relations about cross-
ing probabilities. They are useful because they give us a quantative result. First of,
we have

Pp(H(Rk,l−1)) + P1−p(V(Rk−1,l)) = 1. (3.6)

Lemma 3.2.1 tells us that every configuration is in exactly one of Pp(H(Rk,l−1)) and
Pp(H(Rh

k,l−1)). But Rh
k,l−1 is a k − 1 × l rectangle in the dual of L2. Here edges are

open with probability 1 − p. Therefore Pp(H(Rh
k,l−1)) = P1−p(V(Rk−1,l)) and (3.6)

follows. Secondly, we have

P 1
2
(H(Rn+1,n)) = 1/2 (3.7)

because of the symmetry P 1
2
(H(Rn+1,n)) = P 1

2
(V(Rn,n+1)). Finally,

P 1
2
(H(Rn,n)) = P 1

2
(V(Rn,n)) ≥ 1/2 (3.8)

since H(Rn,n−1) ⊂ H(Rn,n) and the probability measure is monotonic.

What we would like to do next is to connect rectangles, and find out what the
probability is that the (not disjoint) union of two rectangles has an open crossing.
The event X(R) will help us do this.

Definition 3.2.1 Let Rm,2n, m ≥ n and Rn,n have their lower left corner in origo.
X

(
Rm,2n

)
is the event that there exists two open paths P1 ⊂ Rn,n and P2 ⊂ Rm,2n

such that P1 crosses Rn,n from top to bottom and P2 connects P1 with the right
boundary of Rm,2n.

The next proposition tells us that we can bound the probability of X(R) from be-
low with probabilities we already know. The proposition is crucial for connecting
rectangles.

Proposition 3.2.2

Pp(X
(
Rm,2n

)
) ≥ Pp(H

(
Rm,2n

)
)Pp(V

(
Rn,n

)
)/2 (3.9)

Proof. First we do a short construction, but most of the proof is calculation.

Suppose that there is an open path P from top to bottom of Rn,n, i.e. that V(Rn,n)
happens. There may be multiple such P, and we would like to choose one of them.
Let LV(Rn,n) be the left most such P, say P1. Note that, since all edges are indepen-
dent, the event {LV(Rn,n) = P1} is independent of all edges to the right of P1. The
construction is done, and now follows some calculations that lead us to the result.
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Lemma 3.2.3 For all possible values P1 of LV(Rn,n)

Pp
(
X(Rm,2n) | LV(Rn,n) = P1

)
≥ Pp

(
H(Rm,2n)

)
/2. (3.10)

Proof. Let P1 be reflected in the horizontal axis of symmetry in Rm,2n. We will
then get a second path P′1. Add one edge e if needed to connnect P1 with P′1. Now
P′ = P1 ∪ {e} ∪ P′1 is a vertical crossing of Rm,2n. If we have an open horizontal
crossing of Rm,2n, say P3, this path must cross P′ at some vertex. The probability
that P3 exists is Pp(H

(
Rm,2n

)
). By the symmetry of P, the probability that some

path like P3 meets P at a vertex in P1 is Pp(H
(
Rm,2n

)
)/2.

Now define Y(P1) to be the event that there exists an open path P2 ⊂ Rm,2n to
the right of P joining P1 with the right boundary of Rm,2n. Note that the event that
P3 meets P at a vertex in P1 is a subset of Y(P1), and hence

Pp(Y(P1)) ≥ Pp
(
H(Rm,2n)

)
/2.

Also note that Y(P1) only depends on bonds to the right of P1, hence Y(P1) and
LV(Rn,n) = P1 are independent. Thus

Pp
(
Y(P1) | LV(Rn,n)

)
= Pp(Y(P1)) ≥ Pp(H(Rm,2n))/2.

But if Y(P1) holds and the leftmost open vertical crossing of Rn,n is P1, then by
definition X(Rm,2n) holds,

Pp
(
X(Rm,2n) | LV(Rn,n) = P1

)
≥ Pp(H(Rm,2n))/2.

�

But as V(Rn,n) is the disjoin union of all LV(Rn,n) = Pi we get

Pp
(
X(Rm,2n) | V(Rn,n)

)
=
Pp

(
X(Rm,2n ∩ V(Rn,n)

)
Pp(V(Rn,n))

≥ Pp(H(Rm,2n))/2

⇒ Pp(X(Rm,2n)) ≥ Pp(H(Rm,2n))Pp(V(Rn,n))/2.

�

The strength of this proposition is, as stated earlier, that it helps us find lower
bounds for crossing probabilities. We will conclude this section with finding two
such bounds. It will not only be done to demonstrate Proposition 3.2.2, but they
will also be used in the proof of the main theorem. First we need an intermediate
result

Corollary For all n ≥ 1,P 1
2

(
H(R3n,2n)

)
≥ 2−7.
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Proof. Let R2n,2n and R′2n,2n overlap halfway, so that R2n,2n ∩ R′2n,2n is a n × 2n
rectangle. Note that R2n,2n∪R′2n,2n now is a 3n×2n rectangle, exacly what we want
to examine. Call the lower n × n part of the intersection S . This square is where
we have a vertical crossing if X(R2n,2n) happens. Let X′(R′2n,2n) be defined in the
same way as X(R′2n,2n) but reflected horizontally, so that if X′(R′2n,2n) happens the
vertical crossing also is in S . Proposition 3.2.2 now tells us that,

Pp
(
X′(R′2n,2n)

)
= Pp

(
X(R′2n,2n)

)
≥ Pp

(
H(R2n,2n)

)
Pp (V(S )) /2.

From Chapter 2 we know that X(R2n,2n),H(R2n,2n) and H(S ) are increasing events.
In the following calculation, we use this fact when we apply the FKG inequality.

P 1
2

(
H(R3n,2n)

)
= P 1

2

(
H(R2n,2n ∪ R′2n,2n)

)
≥ P 1

2

(
X′(R′2n,2n) ∩ X(R2n,2n) ∩ H(S )

)
≥ P 1

2

(
X′(R′2n,2n

)
P 1

2

(
X(R2n,2n)

)
P 1

2
(H(S ))

≥ P 1
2

(
H(R2n,2n)

)2 P 1
2

(V(S ))2 P 1
2

(H(S )) /4.

From (3.8) we know that the crossing probability of a square is at least 1/2, and
this gives us the result.

P 1
2

(
H(R3n,2n3)

)
≥

(
1
2

)2 (
1
2

)2 (
1
2

) (
1
4

)
= 2−7.

�

We move on to the promised lower bounds. The first one shows that we can we can
connect any number of similar rectangles such that their intersection is a square.
Consider Rm1,2n and Rm2,2n with m1,m2 ≥ 2n such that Rm1,2n ∩ Rm2,2n is a 2n × 2n
squre. Call this square S . Using the FKG inequality and Proposition 3.2.2 we get

P 1
2

(
H(Rm1+m2−2n,2n)

)
= P 1

2

(
H(Rm1,2n ∪ H(Rm2,2n)

)
≥ P 1

2

(
H(Rm1,2n)

)
P 1

2

(
H(Rm2,2n)

)
P 1

2
(V(S ))

≥ P 1
2

(
H(Rm1,2n)

)
P 1

2

(
H(Rm2,2n)

)
/2.

This calculation leads us to the next crossing probability,

P 1
2

(
H(Rm+n,2n)

)
= P 1

2

(
H(Rm+3n−2n,2n)

)
≥ P 1

2

(
H(Rm,2n)

)
P 1

2

(
H(R3n,2n)

)
/2

≥ P 1
2

(
H(Rm,2n)

)
2−8,
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which leads us further on. For k ≥ 3 and n ≥ 1,

P 1
2

(
H(Rkn,2n)

)
≥ P 1

2

(
H(R(k−1)n,2n)

)
. . . ≥ P 1

2

(
H(R3n,2n)

)
2−8(k−3)

≥ 2−72−8(k−3) = 217−8k.

Finally, since H(Rm,2n) ⊂ H(Rm,2n+1), we get the nice result,

For each k ≥ 2 ∃ constant kH > 0 such that P 1
2

(
H(Rkn,n)

)
≥ kH∀n ≥ 1. (3.11)

The second bound will be for 6n× 2n rectangles. Consider the same situation as in
the previous bound, then

P 1
2

(
H(Rm1+m2−n,2n)

)
= P 1

2

(
H(Rm1+m2+n−2n,2n)

)
≥ P 1

2

(
H(Rm1,2n)

)
P 1

2

(
H(Rm2+n,2n)

)
/2

≥ P 1
2

(
H(Rm1,2n)

)
P 1

2

(
H(Rm2,2n)

)
2−9,

⇒ P 1
2

(
H(R5n,2n)

)
≥ P 1

2

(
H(R3n,2n)

)2 2−9

≥ 2−14−9 = 2−23,

⇒ P 1
2

(
H(R6n,2n)

)
≥ P 1

2

(
H(R5n,2n)

)
P 1

2

(
H(R2n,2n)

)
2−9

≥ 2−23−1−9 = 2−33. (3.12)

3.3 The main theorem

L2 is one of the lattices for which pc has been calculated. The fact that pc =

1/2 was an open question for more than 20 years. Harris [3] proved in 1960 that
θ(1/2) = 0, and therefore pc ≥ 1/2. In 1980 Kesten [7] proved the complementary
inequality pc ≤ 1/2 and the problem was solved. This classical proof will be
presented, but also an alternative way to prove that pc ≥ 1/2 will be presented.

Theorem 3.3.1 On L2, pc = 1/2 and θ(1/2) = 0.

Proof. All our previous work (FKG, influence, Russo’s formula) will be used in
the proof, and it will be split in two parts. In the first part we show that the proba-
bility that there is a large open cluster around the origin decays fast when the size
of the cluster is increased. This will be done by constructing closed cycles around
the origin. It is then easy to deduce that θ(1/2) = 0 from this. In the second part,
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influence and Russo’s formula is used to show that the probability that there is an
infinite open cluster when p > 1/2 is greater than zero.

Part 1. As a notion of the size of an open cluster, we use the graph theoretic
radius

r(C) = sup{δ(0, x) : x ∈ C}.

As promised above, we shall show is that for some positive constant c such that

P 1
2

(r(C) ≥ n) ≤ n−c. (3.13)

This will come easily from our previous hard work on crossings of rectangles. At
p = 1/2, it follows from the self duality of L2 that the edges in L2

d are open with
probability 1/2 and independent of each other. Hence (3.12) applies to 6n × 2n
-rectangles in L2

d. Consider the situation where we place two 6n × 2n rectangles,
R and R′, and two 2n × 6n rectangles, R′′ and R′′′ so that they form a 6n × 6n
square with a 2n× 2n hole in the middle. Using the FKG inequality and (3.12), the
probability that there exists a dual cycle in the 4 rectangles is

P 1
2

(
H(R6n,2n) ∩ H(R′6n,2n) ∩ V(R′′2n,6n) ∩ V(R′′′2n,6n)

)
≥ P 1

2

(
H(R6n,2n)

)4

≥
(
2−33

)4

= 2−132 > 0.

What we do next is construct events that these open dual cycles exist around the
origin, and use them to deduce (3.13). Let Ak, k ≥ 1, be the square made up by four
rectangles as above, centered on (1/2, 1/2) with inner radius 4k and outer radius
3 · 4k. Note that all Ak are disjoint sets. Define Bk to be the event that there exists
an open dual cycle inside Ak. By the calculation above

P 1
2

(Bk) ≥ 2−132, ∀ k ≥ 1

Now note two things about Bk:

• Since all Ak are disjoint and all edges in L2
d are independent, all Ek are inde-

pendent.

• If Bk holds, then there are no open paths through connecting points in R3·4k ,3·4k\Ak,
that is in the 4k × 4k hole inside Ak, with points in Ω\R3·4k ,3·4k , that is outside
the outer radius of Ak. Hence we have

r(C) ≤ 3 · 4k < 4k+1.
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With these facts about Bk, we get

P 1
2

(
r(C) ≤ 4l+1

)
≤ P 1

2

 l⋂
k=1

EC
k


=

l∏
k=1

P 1
2

(
EC

k

)
≤

(
1 − 2−132

)l
.

The result follows from substittuting n = 4l+1. From this we can also conclude that
θ(1/2) = 0:

θ(1/2) = P 1
2

(r(C) = ∞) ≤ P 1
2

(r(C) ≥ n) ≤ n−c → 0 as n→ ∞. (3.14)

Part 2. The result from part one implies that pc ≥ 1/2. In this part we build further
on the rectangle arguments to finally conclude that pc ≤ 1/2. To do this, we need
to add two lemmas to the results of Part 1. The first one gives us a lower bound
for the influence that one bond in a rectangle can have. The second one gives us a
lower bound for Pp

(
H(Rm,n)

)
.

Let Ip
A(e) be the influence of e on A under Pp.

Lemma 3.3.2 For 0 < p < 1 and e ∈ Rm,n,

Ip
H(Rm,n)(e) ≤ 2P 1

2

(
r(C) ≥ min

(
m
2
− 1,

n − 1
2

))
. (3.15)

Proof. The proof is really straight forward. Recall that for an increasing set A, the
influence of one edge is

Ip
A(e) = Pp

(
Ae) − Pp (Ae) .

Assume that Ip
H(Rm,n)(e) > 0, the terminology in the litterature for this is that e is

pivotial for H(Rm,n). As H(Rm,n) is increasing and e is pivotial, the configuration
ωe is in H(Rm,n) and there will be an open horizontal crossing of Rm,n. Also ωe is
not in H(Rm,n) so all open horizontal crossings of Rm,n must use e. This tells us
that in ω, one endpoint of e is connected with an open path inside Rm,n to the left
boundary of Rm,n, and the other endpoint to the left boundary. One of these open
paths must have length at least m/2 − 1 and thus

Ip
H(Rm,n)(e) ≤ 2Pp

(
r(C) ≥

m
2
− 1

)
. (3.16)
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From Lemma 3.2.1, we know that ωe is in V(Rh
m,n). Recall how the horizontal dual

of a rectangle was defined, and then it should be obvious by the same argument as
above that

Ip
H(Rm,n)(e) ≤ 2P1−p

(
r(C) ≥

n − 1
2

)
. (3.17)

�

Lemma 3.3.3 Fix p > 1/2 and an integer ρ > 1. Then there exists constants
γ = γ(p) > 0 and n0 = n0(p, ρ) such that

Pp
(
H(Rρn,n)

)
≥ 1 − nγ (3.18)

for all n ≥ n0.

Proof. We know from Proposition 3.14 and Lemma 3.3.2 that we can bound the
influence of e ∈ E on H(Rρn,n) for n ≥ 2 and p̂ ∈ [1/2, p]

I p̂
H(Rρn,n)(e) ≤ n−a.

Now our main result about influence, Theorem 2.3.2, yeilds∑
e∈H(Rρn,n)

I p̂
H(Rρn,n)(e) ≥ cPp̂(1 − Pp̂) log(na). (3.19)

The next step is a trick. Let g(p) = log
(
Pp̂/(1 − P p̂)

)
. We know from Russo’s

Formula that the sum in (3.19) is equal to the derivative of the probability measure
w.r.t. p̂. We get

d
dp̂
g( p̂) =

1
Pp̂(1 − P p̂)

d
dp̂
Pp̂ ≥ ac log(n)

The lower bound in (3.11) allows us to integrate this to

g(p) ≥ ac(p − 1/2) log(n), ∀ n ≥ n0(p, ρ),

and substituting back for g(p) we get the desired result.

�

Fix p > 1/2. Let

Rk =

{
R2kn,2k+1n, k is even,
R2k+1n,2kn, k is odd,

and place them so that all Rk have their lower left corner in origo. Let Ek be the
event that Rk has an open crossing in the long direction. In this construction, an
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open crossing of Rk will intersect an open crossing of Rk+1 if they both happen.
This implies that if all Ek happens, then E∞ happens. By choosing a large enough
n, we can apply Lemma 3.3.3

Pp(E∞) ≥ Pp

 ∞⋂
k=0

Ek


= 1 − Pp

 ∞⋃
k=0

EC
k


= 1 −

in f ty∑
k=0

EC
k

≥ 1 −
∞∑

k=0

(2kn)−γ

= 1 −
nγ

1 − 2−γ
= 1 −

1
nγ − (n/2)γ

> 0.

Since E∞ has positive probability of happening if p > 1/2, by definition

pc ≤ 1/2. (3.20)

From (3.14) and (3.20), we conclude that the value for pc must be 1/2 for bond
percolation on the square lattice.

�

Alternative proof of Part 1. Let p = 1/2 and assume towards a contradiction that
θ(1/2) > 0. Let T (n) = [0, n]2 be the square with origo in its lower left corner and
side length n. Suppose that there is a vertex in T (n) that is part of an infinite open
cluster. If this is the case, then there must be an open path from at least one vertex
on the boundary ∂T (n) to infinity. We conclude that if a vertex in T (n) is a part on
an infinite open cluster, then there is a vertex in ∂T (n) from which there is an open
path to infinity that doesn’t include another vertex from T (n).

With this as motivation, we define Al to be event that there is an open path of
infinite length starting from the left boundary of T (n). For the right, top and bottom
boundary we define Ar, At and Ab in the same way. Saying that T (n) is intersecting
an infinite open cluster is now equivalent to saying that the event Al ∪ Ar ∪ At ∪ Ab

happens. By translation invariance

P 1
2
(Al) = P 1

2
(Ar) = P 1

2
(At) = P 1

2
(Ab).

32



Observe that our assumption θ(1/2) > 0 gives every vertex in T (n) a positive proba-
bility of being a part in an infinite open cluster. For a general n, the FKG inequality
gives us

P 1
2
(T (n)= ∞) = P 1

2

(
(Al)C ∩ (Ar)C ∩ (At)C ∩ (Ab)C

)
≥ P 1

2

(
(Al)C

)
P 1

2

(
(Ar)C

)
P 1

2

(
(At)C

)
P 1

2

(
(Ab)C

)
= P 1

2

(
(Al)C

)4
. (3.21)

Pick a large N such that

P 1
2

(∂T (N)↔ ∞) > 1 − ε, ε > 0. (3.22)

Inserting (3.22) into (3.21), and doing some rewriting, yields

P 1
2

(
Al

)
≥ 1 − P 1

2
(T (n)= ∞)1/4 > 1 − ε1/4. (3.23)

We move on to study the same situation for the dual graph, T ∗(n) = [0, n]2 +
(

1
2 ,

1
2

)
.

For the dual graph, let the event Al
d be that there exists an infinite closed path from

a vertex on the left boundary of T ∗(n) which doesnt include another vertex from
T ∗(n). The events Ar

d, A
t
d and Ab

d are defined in the same way. Since the probability
that an edge is closed is 1/2, we can from the same arguments as for the original
graph deduce that

P 1
2
(Al

d) > 1 − ε1/4, (3.24)

but we may have to choose a bigger n to work with, lets say Nd.
So far we have only made a construction and explored the consequences of it.

Now comes the trick in this part of the proof. For n = max(N,Nd), consider the
event A = Al ∩ Ar ∩ At

b ∩ Ab
d. It is time to choose a value for ε. From (3.22) and

(3.24) we get

P 1
2

(
AC

)
= P 1

2

(
(Al)C ∪ (Ar)C ∪ (At

d)C ∪ (Ab
d)C

)
≤ P 1

2

(
(Al)C

)
+ P 1

2

(
(Ar)C

)
+ P 1

2

(
(At

d)C
)

+ P 1
2

(
(Ab

d)C
)

≤ 4ε1/4.

By choosing ε = (1/8)4, we get P 1
2
(AC) ≤ 1/2 and P 1

2
(A) ≥ 1/2.

If A occurs, we have open paths of infinite length from the left and right bound-
ary of T (N) and we have closed paths from the top and bottom boundary of T ∗(N).
But by theorem 3.1.1, L2 can have at most one infinite open cluster. This means that
the open paths of infinite length must be connected inside T (N). But this makes
it impossible to connect the closed paths of infinite length inside T ∗(N). Since
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the L2 is self-dual, this contradicts the uniqueness of the infinite open cluster. We
conclude that the event A must have probability 0. This contradicts our result that
P 1

2
(A) ≥ 1/2 and the assumption θ(1/2) > 0 is false. Therefore θ(1/2) = 0 and by

definition
pc ≥

1
2
. (3.25)

�
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Chapter 4

Appendix

4.1 Cylinder sets

Our usual setting to work with in this report is to have a countably infinite sample
space Ω = {0, 1}N. Let, by analogy, the state of each edge be represented by a
coin toss. This is a very fair analogy if we let all edges be open with probability
p = 1/2, or closed otherwise. Since Ω is countably finite, it makes sense to order
the edges (coin tosses). Now, for whatever event we are interested in, we can in-
stead ask ourselves ”what is the chance that the sixth, ninth, eleventh, ect... coin
tosses are heads?” This event is by our definition a cylinder set, and something we
would like to measure.

4.2 Proof of the hypercontractivity theorem

We will here prove a slightly more general version than the one stated in Chapter
2, but by choosing q = 2 we get the same result.

Theorem 4.2.1 Let 1 ≤ p ≤ q ≤ ∞, and let ρ ≤

√
p − 1
q − 1

.

Then for all f : −1, 1n → R we have

||Tρ f ||q ≤ || f ||p.

Proof. The proof will be done in two steps. In the first step we consider the case
when n = 1 and construct a ”two point inequality”, since the inequality only can
depend on the two values f (1) and f (−1). The second step is to extend the result
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for arbitrary n by induction on n.

Step 1. As stated above, if n = 1 then f : {−1, 1} → R can be represented by
the two values a = f (1) and b = f (−1). If we apply Tρ, defined by (2.18), we get

Tρ f (1) =

(
1 + ρ

2

)
a +

(
1 − ρ

2

)
b, Tρ f (−1) =

(
1 − ρ

2

)
a +

(
1 + ρ

2

)
b.

Think of all functions f : {−1, 1} → R as points (a, b) ∈ R2, in which case Tρ f are
line segments that joins (a, b) to (b, a). Note that when ρ = 1, Tρ f = f . Also note
that when ρ → 0, Tρ f moves towards the midpoint of the line joining (a, b) with
(b, a).

So, by identifying Boolean functions with points in R2, we can reformulate the
problem to the following. Given a and b, what is the largest ρ = ρ(p, q) such that

||Tρ(a, b)||q ≤ ||(a, b)||p.

Many points (functions) have the same norm ||(a, b)||p. This set of points is can be
though of as level set in lp, i.e. an lp-sphere(a, b) :

(
|a|p + |b|p

2

)1/p

= constant

 .
For p = 2, we recognize these level sets as circles. For p > 2 they look more and
more like squares. For p < 2 they look more and more like diamonds. So restating
the problem again, we ask ”How far towards the middle of Tρ(a, b) do we have to
go to get inside the lq curve?”. The worst case, i.e. the one that is most constraining
for ρ, is when a and b are close together. Without loss of generality, let a = 1 + ε

and b = 1 − ε for some small ε > 0. Now we find the smallest possible ρ so that

||Tρ(1 + ε, 1 − ε)||q ≤ ||(1 + ε, 1 − ε)||p
⇐⇒ ||(1 + ρε, 1 − ρε)||q ≤ ||(1 + ε, 1 − ε)||p

⇐⇒

(
(1 + ρε)q + (1 − ρε)q

2

)1/q

≤

(
(1 + ε)p + (1 − ε)p

2

)1/p

. (4.1)

From the binomail theorem we know that

(1 + ρε)q = 1 + qρε +
q(q − 1)

2
ρ2ε2 + . . . .

Applying this on the fraction in the right hand side of (4.1) makes all odd terms
dissapear

(1 + ρε)q + (1 − ρε)q

2
= 1 +

q(q − 1)
2

ρ2ε2 + O(ε4). (4.2)
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Furthermore,
(1 + δ)q = 1 + qδ + O(δ2). (4.3)

Hence by applying (4.2) and (4.3) to (4.1) we get

LHS = 1 +
q − 1

2
ρ2ε2 + O(ε4), RHS = 1 +

p − 1
2

ε2 + O(ε4). (4.4)

Now if LHS ≤ RHS as ε → 0 we need to have

q − 1
2

ρ2 ≤
p − 1

2
⇒ ρ ≤

√
p − 1
q − 1

,

and the theorem is proven for the case n = 1.

Step 2. The induction will be done slightly differently than how it is usually done.
Instead of assuming that the theorem holds for n = m, we will make a partition of
n. Let the coordinates [n] be partitioned into I and J, and we will write {−1, 1} as
(x, y) where x ∈ {−1, 1}I and y ∈ {−1, 1}J . We will prove the theorem for functions
f : {−1, 1}n → R assuming that it inductively holds for functions {−1, 1} → R and
{−1, 1} → R. There will be four calculations on the way.

First calculation

||Tρ f ||q =
(
Ey

[
Ex

[
|(Tρ f )(x, y)|q

]])1/q

= Ey
[
||(Tρ f )y(x)||qq

]1/q
. (4.5)

What is (Tρ f )y as a function of x ∈ {−1, 1}I .

Tρ f =
∑

S⊂[n]

ρ|S | f̂ (S )uS =
∑
A⊂I

∑
B⊂J

ρ|A|ρ|B| f̂ (A ∪ B)uAuB,

hence as a function of x:

(Tρ f )y =
∑
A⊂I

ρ|A|
∑

B⊂J

ρ|B| f̂ (A ∩ B)uB(y)

 uA = Tρgy

where gy : {−1, 1} → R is defined as gy =
∑
A⊂I

∑
B⊂J

ρ|B| f̂ (A ∩ B)uB(y)

 uA.
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Second calculation, where we use the induction assumption:

(4.5) = Ey
[
||Tρgy(x)||qq

]1/q
≤ Ey

[
||gy(x)||qp

]1/q

= Ey

[
Ex

[
|gy(x)|p

]q/p
]1/q

= Ey
[
(something non-negative)q/p

]1/q

= ||something non-negative||p/q·1/qq/p (y)

=
(
||Ex

[
|gy(x)|p

]
||q/p(y)

)1/p
. (4.6)

Inside || · ||q/p in (4.6) is an expectation over x. This expectation is nothing else than
constants times a sum over x. Recall the triangle inequality for || · ||q/p, ||g+ h||q/p ≤

||g||q/p + ||h||q/p. Using the triangle inequality and linearity of the expectation,

||Ex [. . . ] ||q/p ≤ Ex
[
|| . . . ||q/p

]
.

So we do the third calculation, where we use the result above:

(4.6) ≤
(
Ex

[
|| |gy(x)|p ||pq

])1/p
=

(
Ex

[
Ey

[
|gy(x)|q

]p/q
])1/p

=
(
Ex

[
||gy(x)||pq

]
(y)

)1/p
. (4.7)

What is gy(x) as a function of y ∈ {−1, 1}J?

gy(x) =
∑
A⊂I

∑
B⊂J

ρ|B| f̂ (A ∪ B)uB(y)

 uA(x)

=
∑
B⊂J

ρ|B|
∑

A⊂I

f̂ (A ∪ B)uA(x)

 uB(y).

We see that gy(x) = Tρh(y) for some h(y), i.e. h has the fourier expansion

h =
∑
B⊂J

∑
A⊂I

f̂ (A ∪ B)uA(x)

 uB =
∑

S⊂[n]

f̂ (S )uS∩I(x)uS∩J .

The equation above tells us that h is nothing else than the restriction of f , by fixing
x for the coordinates I. We use this and the induction assumption to make the last,
fourth, calculation:

(4.7) =
(
Ex

[
||Tρ fx fixed||

p
q

])1/p
≤

(
Ex

[
|| fx fixed||

p
p

])1/p

=
(
Ex

[
Ey

[
| fx fixed(y)|p

]])1/p

=
(
E

[
| f |p

])1/p

= || f ||p.
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