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Abstract
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School of Engineering Sciences

Master of Science

The SVI implied volatility model

and its calibration

by Alexander Aurell

The SVI implied volatility model is a parametric model for stochastic implied volatil-

ity. The SVI is interesting because of the possibility to state explicit conditions on its

parameters so that the model does not generate prices where static arbitrage opportu-

nities can occur. Calibration of the SVI model to real market data requires non-linear

optimization algorithms and can be quite time consuming. In recent years, methods to

calibrate the SVI model that use its inherent structure to reduce the dimensions of the

optimization problem have been invented in order to speed up the calibration.

The first aim of this thesis is to justify the use of the model and the no static arbitrage

conditions from a theoretic point of view. Important theorems by Kellerer and Lee and

their proofs are discussed in detail and the conditions are carefully derived. The sec-

ond aim is to implement the model so that it can be calibrated to real market implied

volatility data. A calibration method is presented and the outcome of two numerical

experiments validate it.

The performance of the calibration method introduced in this thesis is measured in how

big a fraction of the total market volume the method manages to fit within the market

spread. Tests show that the model manages to fit most of the market volume inside the

spread, even for options with short time to maturity.

Further tests show that the model is capable to recalibrate an SVI parameter set that

allows for static arbitrage opportunities into an SVI parameter set that does not.

Key words: SVI, stochastic implied volatility, static arbitrage, parameter calibration,

Kellerer’s theorem, Lee’s moment formula.
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Chapter 1

Introduction

This introduction will briefly state the background, purpose and delimitations of the

work done in this thesis. Also a summary of all the chapters is given.

1.1 Background

When pricing financial contracts such as options it is common practice to use the Black-

Scholes framework. Black-Scholes assumes that options with all parameters equal, except

the strike price, are to be priced with the same implied volatility parameter value. This

however stands in contradiction with the real world where market prices imply that the

volatility depends on the strike price. One way that practioners handle this problem is

to create implied volatility surfaces. An implied volatility surface is a function,

(Time to maturity, Strike) 7→ Implied volatility(Time to maturity, Strike).

The work flow is basically as follows:

(1) Provided by option prices from the market for a range of strikes and maturities

one gets the corresponding implied volatilities by inverting the Black-Scholes price

function.

(2) Use the result from (1) to create an implied volatility surface for all (Strike,Maturity)-

points.

(3) When pricing an option with a given strike and maturity get the implied volatility

to use from the surface.

1



Chapter 1. Introduction 2

There are several popular models that are used for the surface construction in (2). The

stochastic volatility inspired, or SVI, model of the implied volatility surface was originally

created at Merrill Lynch in 1999 and was introduced to the public in the presentation [1].

The model has two key properties that are often stated in the literature that followed [1]

as reasons for its popularity amongst practitioners. It satisfies Lee’s Moment Formula,

a model free result that specifies the asymptotics for implied volatility. Therefore, the

SVI model is valid for extrapolation far outside the avaliable data. Furthermore, it is

stated that the SVI model is relatively easy to calibrate to market data so that the

corresponding implied volatility surface is free of calendar spread arbitrage. The recent

development of the SVI model has been towards conditions guaranteing the abscence

of butterfly arbitrage. In [2] this problem is solved by restricting the parameters in the

SVI model.

1.2 Purpose of the thesis

The purpose of this thesis is to motivate the usage of the SVI model from a theoretical

point of view, and implement the SVI model so that a parametrized implied volatility

surface can be fitted to market data. Furthermore, the model should be able to detect

static arbitrage and eliminate it by a recalibration. The thesis aims to give thorough

explanations of the underlying theoretical results, and do a complete derivation of the

no static arbitrage conditions. It also aims to in detail present a calibration method for

the SVI parameters to real market implied volatility data and evaluate its accuracy.

1.3 Outline of the thesis

This thesis is divided into five chapters. Chapter 1 introduces the topic of this thesis,

states the purpose of it, summarizes it and states the delimitations that were done.

In Chapter 2, two underlying theoretical results are presented. Conditions on the call

prices that guarantees absence of static arbitrage is derived using Kellerer’s theorem and

these conditions are translated into conditions on the implied volatility surface. Lee’s

Moment Formula is recalled and its implications are discussed. In Chapter 3, the SVI

parameterization for implied volatility and variations of it are presented. A concrete

method for eliminating static arbitrage in the implied volatility smile is constructed. In

Chapter 4, the calibration method used to fit the SVI model to market data is described

in detail. The final chapter, Chapter 5, numerical results of the calibration method are

presented.
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1.4 Delimitations

Some proofs are omitted and the reason for this is either their extensive length or that

they are unrelevant to the surrounding context. If a proof is omitted, a reference is given

to a complete proof.

Calendar spread arbitrage is only treated in theory. Sufficient conditions for the elim-

ination of calendar spread arbitrage are derived together with the sufficient conditions

for elimination of butterfly arbitrage, but no numerical experiments are done trying to

eliminate calendar spread arbitrage from SVI surfaces fitted to real market data.

Numerous delimitations are made in the last chapter, mainly because of the lack of time.

The speed of the calibration is not investigated. Only one set of weights are used in the

optimization and only one type of options, call and put options on the S&P 500, are

used.

The error of the fit is quantified in two ways, the fraction of the total market that the

SVI fitted inside the price spread and the distance from the SVI fitted prices to the price

spread. These results are not compared to the results of other calibration methods.



Chapter 2

Kellerer’s Theorem and Lee’s

Moment Formula

In this chapter, a theoretical approach to the elimination of static arbitrage in an implied

volatility surface will be presented. It begins with setting up the model framework used

in the rest of the thesis and then gives a short introduction to stochastic implied volatility.

After that, sufficient conditions for the absence of static arbitrage on the surface of call

prices,

(Time to maturity, Strike) 7→ Call price(Time to maturity, Strike),

are derived through an application of Kellerer’s Theorem. At every time to maturity

the density of the underlying’s price process martingale is matched with the density of

a martingale that has the Markov property. The conditions on the call surface are then

translated into conditions for the implied volatility surface.

Additionally, Lee’s Moment Formula is examined. It is a model free result that states

conditions on the asymptotes of implied volatility smiles. Iimplied volatility smile is the

name in finance for a time to maturity-section of the implied volatility surface. For a

fixed, positive t,

Implied volatility smile(Strike) = Implied volatility(Time to maturity = t,Strike)

All models that extrapolate implied volatility generated from market data in the strike

direction should satisfy Lee’s Moment Formula.

4



Chapter 2. Kellerer’s Theorem and Lee’s Moment Formula 5

2.1 Stochastic implied volatility

The model is set up in a probability space (Ω, (Ft, t ≥ 0),Q). The filtration (Ft, t ≥ 0),

indexed by the time t, is generated by a 2-dimensional Brownian motion (B0, B1) and

Q is the measure under which the underlying’s discounted price process is a martin-

gale. There are M + 2 traded objects in the model, the underlying with price process

S(t) = St, a set of M European call options with strike prices and times to maturity

(K,T ) written on St and a risk-free investment with constant, positive interest rate r.

The underlying price process is assumed to be represented by the dynamics

dSt = rStdt+ σStdB
0
t , (2.1)

where σ is stochastic. The Black-Scholes price of a call option is given by the Black-

Scholes formula stated in Equation (2.2) and the implied volatility. The implied volatility

will be denoted by σimp. The name and notation emphesizes that it is implied from the

Black-Scholes pricing formula. Hence, there is a difference between the volatility of the

underlying’s price process, σ from Equation (2.1), and the implied volatility, σimp from

Equation (2.2). The model is not set up in a Black-Scholes world since σ is not assumed

to be constant but depends on both strike price and time to maturity. Therefore, the

Black-Scholes formula merely serves as a convenient tool to describe option prices. Note

that σimp does not necessarily equal σ. An important note to bear in mind as motivation

for using implied volatility, is that it is generally easier to observe the implied volatility

on the market than it is to observe the volatility of the underlying’s price process.

The formal definition of implied volatility of an option is the parameter σimp that gives

the observed option price, C, when inserted into the Black-Scholes call price formula,

CBS(τ,K, τσ2
imp;S, r, t) = StN (d1)− e−rτKN (d2). (2.2)

Here N (x) is the cumulative distribution function of a standard normally distributed

random variable, t is the current time, T is the maturity time for the option, τ = T − t
is the time to maturity for the option and d1 and d2 are the Black-Scholes auxiliary

functions,

d1(τ,K, τσ2
imp;S, r, t) =

log (St/K) + τr + τσ2
imp/2√

τσ2
imp

, (2.3)

d2(τ,K, τσ2
imp;S, r, t) =

log (St/K) + τr − τσ2
imp/2√

τσ2
imp

.
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The dependece on the variables S, r, and T is denoted behind a semicolon, separating

them from τ,K and σ. This is done to clarify that in this thesis, they are of lesser

interest than the variables τ,K and σimp. More than often, the dependence of the

variables behind the semicolon will be surpressed. This paragraph is summarized in the

following definition.

Definition 1. (Implied volatility) Let a call option be written on the underlying S at

time t with strike price K and expiry time T . Let the observed market price for this

option be C. The implied volatility of the option is the unique value of σimp that solves

C = CBS(τ,K, τσ2
imp;S, r, t).

An alternative, but equivalent, definition of implied volatility can be stated by replacing

the underlying’s price process with the forward price.

Definition 2. The forward price process of the underlying S is

F (t, τ) = F[t,t+τ ] = erτSt.

If using F[t,t+τ ] instead of St, the implied volatility of an option is the parameter σimp

that gives the observed compounded option price, Cerτ , when substituted into what is

called the Black call price formula,

CB(τ,K, τσ2
imp;F, r, t) = F[t,t+τ ]N (d1)−KN (d2). (2.4)

By using the forward price instead of the underlying’s price process, the auxiliary func-

tions in Equation (2.3) simplify to

d1(τ,K, τσ2
imp;F, r, t) =

log
(
F[t,t+τ ]/K

)
+ 1

2σ
2
impτ√

τσ2
imp

, (2.5)

d2(τ,K, τσ2
imp;F, r, t) =

log
(
F[t,t+τ ]/K

)
− 1

2σ
2
impτ√

τσ2
imp

.

The Black call price formuka will be used instead of the Black-Scholes call price formula

especially in Appendix C.

So far, all we have said about σ is that it is random. If this is the case, σimp should also

be random. This is in accordance with observations of the real market, where volatility

across strike and across time is not constant but behaves in a stochastic manner. Hence

let the implied variance, σ2
imp, for an option written on S with maturity T and strike K
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have the following dynamics,

dσ2
imp(τ,K, τσ2

imp;S, r, t) = α(τ,K, τσ2
imp;S, r, t) dt+ ηβ(τ,K, τσ2

imp;S, r, t) dB1
t , (2.6)

where 〈dB0
t , dB

1
t 〉 = ρdt, ρ ∈ [−1, 1]. In Chapter 8.6 in [3], it is derived that the

Black-Scholes model with non-constant but deterministic implied volatility is retrieved

in the limit η → 0. This is not necessarily an advantage for the model performance,

however it is almost a practical requirement as the Black-Scholes model is the core of

the intuition of practitioners. The choice of specifying the dynamics of the implied vari-

ance instead of the implied volatility is made to follow the line of literature in [3] and [4].

Being able to model correlation between the underlying’s price process and the cor-

responding implied volatility is necessary, as it can be observed on the real market. In

Figure 2.1, historical data for the S&P 500 index and the VIX index are presented. The

S&P 500 is a stock market index based on the performance of the 500 largest companies

which are listed at the New York Stock Exchange or the NASDAQ, while the VIX index

is a measure of the implied volatility of the S&P 500 index. In this figure it can be seen

that when the S&P 500 suffers a severe drop, such as during the Russian crisis of 1998,

the end of the IT-bubble in 2002, the U.S. housing bubble in 2008 and the European

sovereign debt crisis in 2011, the VIX index rose dramatically. Heuristically, a negative

correlation between the S&P 500 and the VIX can be established.

2.2 Static arbitrage

This section introduces the concept of static arbitrage and how it differs from dynamic

arbitrage, the kind of arbitrage that is treated in The Fundamental Theorem of Asset

Pricing.

Definition 3 (Dynamic arbitrage opportunity). A dynamic arbitrage opportunity is a

costless trading strategy that gives a positive future profit with positive probability and

has no probability of a loss.

The problem with this definition is that the opportunity depends on a too big set of

data than is desired or even available in practical situations. For example, in continuous

time the definition depends on the path properties of underlying’s price processes. In

practice only past prices at discrete times are observable. Working with static arbitrage,

which is defined in Definition 4 below, suits this situation.
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Figure 2.1: S&P 500 (left vertical axis) and VIX (right vertical axis) monthly index
values plotted from January 1990 until today. Some important months are highlighted
to visualize the negative correlation between the underlying’s price process and the

underlying’s volatility. Data gathered from finance.yahoo.com on 7/8/2014.

Definition 4 (Static arbitrage opportunity). A static arbitrage opportunity is a dy-

namic arbitrage opportunity where positions in the underlying at a particular time only

can depend on time and actual corresponding price.

The Fundamental Theorem of Asset Pricing tells us that no dynamic arbitrage is equiv-

alent to the existence of an equivalent martingale measure. From Definition 4, the

following relaxed connection for static arbitrage was established in [5] and [6]. Instead

of starting with a complete probability space and seeking martingales via a change of

measure, as is the case in the elimination of dynamic arbitrage, the authors of [5] and

[6] start with a family of densities, {q(X, t), t > 0}, of random variables, {Xt, t > 0},
indexed by t. These densities can be interpreted as measures, which will be done in

Section 2.3. The authors proceed to show that if there exist some probability space on

which it is possible to define a martingale M(t) with the Markov property so that the

law of M(t) is q(M, t) for each t, then the process X = (Xt, t > 0) does not admit static

arbitrage. We will refer to these laws, or densities, as t-marginals and we will call two

proceeses that agree on their t-marginals for all t associated processes.
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Definition 5 (Associated process). If (Xt; t ≥ 0) and (Yt; t ≥ 0) are two stochastic

processes indexed by t, they are said to be associated if they have the same t-marginals

for all t.

The theory that tell us whether an underlying asset, observable through call option

prices on the market, and a process that is a martingale are associated or not is based

on a theorem by Kellerer [7], which will be recalled in Section 2.3. The Markov property

for stochastic processes is defined in Definition 6, which is the definition of Durrett [8].

Definition 6 (Markov property for stochastic processes). Let (Ω,F ,P) be a probability

space with a filtration (Fs, s > 0) and let (S,S) be a measurable space. An Fs-adapted

process X = (Xt, t > 0) : Ω 7→ S is said to have the Markov property if for each s ∈ S
and each s, t > 0 with s < t,

P (Xt ∈ s|Fs) = P (Xt ∈ s|Xs) .

Equivalently, the process has the Markov property if for all t ≥ s ≥ 0 and for all bounded

and measurable f : S 7→ R,

E [f(Xt)|Fs] = E [f(Xt)|Xs] .

An easy application of the tower property of conditional expectations shows that no

dynamic arbitrage implies no static arbitrage, since the information set available when

trading under no static arbitrage is a subset of that used when trading under no dynamic

arbitrage. On the other hand, no static arbitrage does not imply no dynamic arbitrage,

and this is best illustrated through a reproduction of an example in [6]. Let a process

be defined on a grid with two levels, as in Figure 2.2. Call the process on the grid in

Figure 2.2 for Mt. The procees Mt can not be a martingale since E[M1|M0.5] 6= M0.5.

But on the other hand, Mt has exactly the same t-marginals as the process in Figure 2.3

that goes up or down one price tick at each node with equal probability, and this process

is a martingale!
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Figure 2.2: An example of a process that is not a martingale but for which there
exists a martingale with the same distribution at each discrete step.
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Figure 2.3: A process that is a martingale and has the same distribution at each
discrete step as the process in Figure 2.2.
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2.3 Kellerer’s theorem: derivation

In this section, conditions for no static arbitrage on a call surface for European options

are derived using Kellerer’s theorem, which will be proved following the work of Hirsch,

Roynette and Yor in [9] and [10]. We begin with some definitions.

Definition 7 ( Mf ). Mf is the set of all probability measures µ on R such that∫
|x|µ(dx) <∞.

Definition 8 ( Call function ). For µ ∈Mf and x ∈ R, the corresponding call function

is defined as

Cµ(x) =

∫
R

(y − x)+µ(dy).

From these definitions, we can derive three properties of the call function Cµ.

Proposition 1. Cµ is non-negative and convex.

Proof. Since (y−x)+ ≥ 0 for all (x, y) ∈ R2 and µ ∈Mf , Cµ is non-negative. Convexity

follows from the non-negativity of µ together with the following calculation,

∂2Cµ
∂x2

(x) =
∂

∂x

(
∂

∂x

∫
R

(y − x)+µ(dy)

)
=

∂

∂x

∫ ∞
x
−µ(dy)

= µ(x).

Proposition 2. Cµ satisfies

lim
x→∞

Cµ = 0.

Proof. Let fn = (y−n)+ for n ∈ Z, and let gn = f0−fn. Then {gn} is an increasing, non-

negative sequence of measurable functions that converges pointwise to f0 and monotone

convergence applies to gn,

lim
n→∞

∫
R
gn(y)µ(dy) =

∫
R

lim
n→∞

gn(y)µ(dy).

Thus we have

lim
n→∞

(∫
R
f0(y)µ(dy)−

∫
R
fn(y)µ(dy)

)
=

∫
R
f0(y)µ(dy)−

∫
R

lim
n→∞

fn(y)µ(dy)

=

∫
R
f0(y)µ(dy),
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and

lim
x→∞

Cµ(x) = lim
n→∞

∫
R
fn(y)µ(dy)

= 0.

Proposition 3. There exists a real number a so that

lim
x→−∞

Cµ(x) + x = a.

Proof. Note first that (y − x)+ = sup{y, x} − x. Hence, since µ ∈Mf ,

Cµ(x) =

∫
R

(y − x)+µ(dy)

=

∫
R

sup{y, x}µ(dy)− x
∫
R
µ(dy)

=

∫
R

sup{y, x}µ(dy)− x,

so we get

lim
x→−∞

Cµ(x) + x = lim
x→−∞

∫
R

sup{y, x}µ(dy).

Now let fn(y) = sup{y,−n} for n ∈ Z, and let gn(y) = f0(y) − fn(y). Then {gn} is an

increasing, non-negative sequence of measurable functions that converges pointwise to

f0 − y and monotone convergence applies,

lim
n→∞

∫
R
gn(y)µ(dy) =

∫
R

lim
n→∞

gn(y)µ(dy).

Thus, we get

lim
n→∞

(∫
R
f0(y)µ(dy)−

∫
R
fn(y)µ(dy)

)
=

∫
R
f0(y)µ(dy)−

∫
R

lim
n→∞

fn(y)µ(dy)

=

∫
R
f0(y)µ(dy)−

∫
R
yµ(dy),

and the reuslt follows,

lim
x→−∞

Cµ(x) + x = lim
n→∞

∫
R
fn(y)µ(dy) (2.7)

=

∫
R
yµ(dy) <∞.
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These three properties can also serve as a characterization of a probability measure, as

the next proposition will tell us. This is a useful direction for our purpose.

Proposition 4. If C : R 7→ R has the properties in Proposition 1, Proposition 2 and

Proposition 3,

P1. C is non-negative and convex,

P2. C(x)→ 0 as x→∞,

P3. There exists a real number a such that C(x) + x→ a as x→ −∞,

then there exists a unique µ ∈Mf such that C = Cµ. Furthermore, this µ is the second

derivative of C in the sense of distributions.

Proof. The proof of this direction can be found either in Proposition 2.1 of [10] or Lemma

7.23 of [11]. A slightly different version of the theorem is proven in Theorem 2.1 of [12].

The proof is omited here.

Additionally, three useful properties of the call function can be derived.

Proposition 5. If µ ∈Mf then

i) for all x1 ∈ R and x2 ∈ R such that x1 ≤ x2,

0 ≤ Cµ(x1)− Cµ(x2) ≤ x2 − x1,

ii) for all x ∈ R
Cµ(x) + x−

∫
R
xµ(dy) =

∫
R

(x− y)+µ(dy),

iii) lim
x→−∞

Cµ(x) + x =

∫
R
yµ(dy).

Proof of i). Using the rewriting of the integrand in the call function from the proof of

Proposition 3,

(y − x)+ = sup{x, y} − x,

the upper inequality can be derived,

Cµ(x1)− Cµ(x2) =

∫
R

sup{y, x1}µ(dy)− x1 −
∫
R

sup{y, x2}µ(dy) + x2

= x2 − x1 +

∫
R

sup{y, x1} − sup{y, x2}µ(dy)︸ ︷︷ ︸
≤0

≤ x2 − x1.
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The lower inequality follows from the fact that the call function is non-increasing in x,

which was shown in the proof of Proposition 4.

Proof of ii). This is another application of the rewriting of the integrand in the call

function from the proof of Proposition 3,

Cµ(x) + x−
∫
R
xµ(dy) =

∫
R

(y − x)+µ(dy) + x−
∫
R
yµ(dy)

=

∫
R

(y − x)+µ(dy) +

∫
R
xµ(dy)−

∫
R
yµ(dy)

=

∫
R

sup{y, x} − x+ x− yµ(dy)

=

∫
R

(x− y)+µ(dy).

Proof of iii). This is an application of monotone convergence to the rewriting

lim
x→−∞

∫
R

(x− y)+µ(dy) = lim
n→∞

∫
R

(−n− y)+µ(dy).

The following special subset of Mf is useful for us.

Definition 9 (Uniformly integrable subset). A subset H ofMf is said to be uniformly

integrable if

lim
c→∞

sup
µ∈H

∫
|x|≥c

|x|µ(dx) = 0.

Note that if H is uniformly integrable then

sup
µ∈H

{∫
|x|µ(dx)

}
<∞.

The two next propositions treat peacocks. A peacock is a family of stochastic processes

or measures that have special convex properties.

Definition 10 (Peacock, measure version). Let (µt; t ≥ 0) be a family of probability

measures on R indexed by t. Then (µt; t ≥ 0) is a peacock if

i) for all t ≥ 0,

∫
|x|µt(dx) <∞,

ii) for all convex Ψ : R→ R, the map

g : [0,∞) → (−∞,∞],

t 7→
∫

Ψ(x)µt(dx),
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is increasing.

Proposition 6. Let the family of measures (µt; t ≥ 0) be in Mf . Let furthermore∫
R xµt(dy) be independent of t. Then (µt; t ≥ 0) is a peacock if and only if for all x ∈ R,

the map t 7→ C(t, x), where C(t, x) = Cµt(x), is increasing.

Proof. The assumption that (µt; t ≥ 0) is in Mf makes the family of measures satisfy

condition i) of Definition 10. Thus let us focus on condition ii) of Definition 10.

Assume that (µt; t ≥ 0) is a peacock, and hence satisfies condition ii) of Definition 10.

Let Ψ(x) = (x − c)+, c ∈ R. Then C(t, x) =
∫

Ψ(x)µt(dx), and the map t → C(t, x) is

increasing. The proof of the other direction is long. It can be derived from Corollary

2.62 together with Theorem 2.58 in [11] and it is omitted here.

Proposition 7. Assume that (µt; t ≥ 0) is a peacock. Assume furthermore that∫
R xµt(dy) is independent of t. Then

1. the set {µt; 0 ≤ t ≤ T} is uniformly integrable,

2. lim
|x|→∞

sup {C(t, x)− C(s, x) : 0 ≤ s ≤ t ≤ T} = 0.

Proof of 1. Note that if c ≥ 0,

|y|I|y|≥c ≤ (2|y| − c)+ .

Then, since (2|y| − c)+ is convex and (µt; t ≥ 0) is a peacock,

sup
t∈[0,T ]

∫
|y|≥c
|y|µt(dy) ≤

∫
R

(2|y| − c)+ µT (dy).

Let fn(y) = (2|y| − n)+ for n ∈ N, then {fn} is a sequence of measurable functions with

the pointwise limit 0. Also, |fn(y)| = fn(y) ≤ 2|y| for all n ∈ N, and under the law of

µT ,

2

∫
R
|y|µT (dy) <∞,

since µT ∈Mf . Hence by dominated convergence

lim
c→∞

sup
t∈[0,T ]

{∫
|y|≥c
|y|µt(dy)

}
≤ lim

c→∞

∫
R

(2|y| − c)+ µT (dy)

= lim
n→∞

∫
R
fn(y)µT (dy) = 0,

which proves that {µt; 0 ≤ t ≤ T} is uniformly integrable.
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Proof of 2. Since (y − x)+ is a convex function in x and (µt; t ≥ 0) is a peacock,

condition ii) in Definition 10 tells us that the call function is an increasing function in

t and we get the inequality

sup{C(t, x)− C(s, x) : 0 ≤ s ≤ t ≤ T} ≤ C(T, x)− C(0, x).

By Proposition 1, the call function is non-negative, so C(0, x) ≥ 0 and

sup{C(t, x)− C(s, x) : 0 ≤ s ≤ t ≤ T} ≤ C(T, x).

By Proposition 2,

lim
x→∞

sup{C(t, x)− C(s, x) : 0 ≤ s ≤ t ≤ T} = 0,

and we have proven the statement for large positive limit of x.. Now we have to prove

it in the large negative limit of x. Since
∫
R xµt(dy) is independent of t,

C(t, x)− C(s, x) =

(
C(t, x) + x−

∫
R
xµt(dy)

)
−
(
C(s, x) + x−

∫
R
xµs(dy)

)
.

By the same arguments as above, C(t, x) is increasing in t, so

sup{C(t, x)− C(s, x) : 0 ≤ s ≤ t ≤ T} ≤ C(T, x) + x−
∫
R
xµT (dy).

Taking the large negative limit and using Proposition 3 completes the proof,

lim
x→−∞

sup{C(t, x)−C(s, x) : 0 ≤ s ≤ t ≤ T} ≤ lim
x→−∞

(
C(T, x) + x−

∫
R
xµT (dy)

)
= 0.

In the end of this section we will connect two processes via association, defined in

Definition 5. The connection will be made through an application of the following

uniqueness theorem for solutions of the Fokker-Planck equation.

Theorem 1 (M. Pierre’s Uniqueness Theorem for the Fokker-Planck Equation). Let

the map

a : R+ × R → R+

(t, x) 7→ a(t, x)

be continuous such that a(t, x) > 0 for all (t, x) ∈ (0,∞) × R, and let µ ∈ Mf . Then

there exists at most one family of probability measures (p(t,dx); t ≥ 0) such that
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(FP1) t 7→ p(t,dx) is weakly continuous,

(FP2) p(0, dx) = µ(dx) and

∂p

∂t
− ∂2

∂x2
(ap) = 0, in S′ ((0,∞)× R) ,

where S′ is the space of Schwartz distributions.

Proof. The proof is omitted for two reasons. Most importantly, it is not relevant to the

understanding of Kellerer’s theorem. Secondly, it is very long. A thorough version of

the proof can be found in [13], Chapter 6.1.

When the underlying’s price process and the martingale have been connected, we would

like to establish the Markov property for the martingale. A stronger property than the

Markov property will be established for a certain class of stochastic processes in the next

theorem, but first we need some new notation. As was done in [10], Definition 4.1 from

[14] is used; if (Xt; t ≥ 0) is an R-valued stochastic process then FX is the filtration

generated by X,

FXt = σ{Xs, s ≤ t}, ∀ t ≥ 0.

For a Lipschitz continuous function f : R → R, let L(f) denote its Lipschitz constant.

Let X be an R-valued process. We say X has the Lipschitz-Markov property if there

exists a Lipschitz continuous f : R→ R with Lipschitz constant L(f) < 1 such that for

all bounded and continuous functions g : R→ R with L(g) ≤ 1 and all s ∈ [0, t],

f(Xs) = E
[
g(Xt) | FXs

]
.

The Lipschitz-Markov property implies the Markov property defined in Definition 6.

The following theorem tells us that a certain kind of process has the Lipschitz-Markov

property.

Theorem 2. Let the map

σ : R+ × R → R,

(t, x) 7→ σ(t, x),

be continuous and such that ∂xσ exists and is continuous. Let furthermore X0 be an

integrable random variable and (Bt; t ≥ 0) be a standard Brownian motion independent

of X0. Then

Xt = X0 +

∫ t

0
σ(s,Xs) dBs
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has a unique solution with the Lipschitz-Markov property.

Proof. The proof is omitted here for the same reason as the proof of Theorem 1. The

proof can be found in [10].

Finally we arrive to the theorem that establishes the connection.

Theorem 3 (Kellerer’s Theorem). Let (Xt; t ≥ 0) be an R-valued integrable stochastic

process indexed by t with t-marginals (p(t, x); t ≥ 0). Let furthermore
∫
R xp(t,dx) be

independent of t, and let

C : R+ × R → R+,

(t, x) 7→ E
[
(Xt − x)+

]
.

Asssume the following,

1. C ∈ C2,2(R+ × R) and

p(t, x) =
∂2C

∂x2
(t, x), ∀(t, x) ∈ R+ × R,

2. p is positive on R+ × R, ∂tC is positive on (0,∞)× R and

σ(t, x) =

√
2

p

∂C

∂t
, ∀(t, x) ∈ R+ × R.

Then

Zt = Z0 +

∫ t

0
σ(s, Zs) dBs

has a unique strong solution (Yt; t ≥ 0) which is a martingale associated with (Xt; t ≥ 0)

satisfying the Lipschitz-Markov property. This in turn implied absence of static arbitrage

on the call surface C by the discussion in Chapter 2.2.

Proof. The proof will be divided into three steps. First, using Theorem 1, we prove that

X and Y are associated processes. In the second step we prove that Y is a martingale.

In the third step we show that Y has the Lipschitz-Markov property, using Theorem 2.

Step 1. We start with investigating the process X. Recall that the elements of the

family (p(t, x); t ≥ 0) are the t-marginals of (Xt; t ≥ 0). Let a(t, x) = σ2(t, x)/2, then

∂2

∂x2
(ap) =

∂3

∂x2∂t
C =

∂

∂t
p.
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Also t 7→ p(t, x) is a continuous function since ∂xxC is continuous by assumption 1. in

the statement of the theorem. Hence (p(t, x); t ≥ 0) satisfies the Fokker-Planck equation.

Furthermore, since a(t, x) is positive everywhere, Theorem 1 tells us that (p(t, x); t ≥ 0)

is the unique family of measures that does this.

We now investigate the process Y . Let ϕ be a real-valued function on the real line

that is twice differentiable and has compact support within Y (R), the image of Y . Itō’s

fomula says,

dϕ(Yt) =
∂ϕ

∂x
(Yt) dYt +

1

2

∂2ϕ

∂x2
(Yt) d〈Y 〉t.

The dynamics of Yt is by Itō’s formula,

dYt = 0 dt+ σ(t, Yt) dBt + 0 dt,

d〈Y 〉t = σ2(t, Yt) dt.

Hence, we get

dϕ(Yt) = σ(t, Yt)
∂ϕ

∂x
(Yt) dBt +

1

2
σ2(t, Yt)

∂2ϕ

∂x2
(Yt) dt.

Integrating from 0 to t, with a(t, x) = σ2(t, x)/2, yields,

ϕ(Yt)− ϕ(Y0) =

∫ t

0
σ(s, Ys)

∂ϕ

∂x
(Ys) dBs +

∫ t

0
a(s, Ys)

∂2ϕ

∂x2
(Ys) ds.

Under expectation conditioned on Y0 = y0, the first integral vanishes since ϕ ∈ C2(Y (R)).

With q(t, Y ) as the law of Yt, we get∫
Yt(R)

ϕ(x)q(t,dx) + y0 =

∫
Yt(R)

∫ t

0
a(s, x)

∂2ϕ

∂x2
(x)q(ds, dx).

The last step is to take the derivative with respect to time. In the proceeding calcu-

lations, the fact that ϕ(Yt) has compact support in the interior of Yt(R) is used in the

partial integration. The left hand side becomes,

∂

∂t

∫
Yt(R)

ϕ(x)q(t,dx) + y =

∫
Yt(R)

ϕ(x)
∂q

∂t
(t,dx),
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and the right hand side becomes,

∂

∂t

∫
Yt(R)

∫ t

0
a(s, x)

∂2ϕ

∂x2
q(ds, dx) =

∫
Yt(R)

a(t, x)
∂2ϕ

∂x2
q(t,dx)

=

[
a(t, x)

∂ϕ

∂x
q(t, x)

]
∂Yt(R)

−
∫
Yt(R)

∂ϕ

∂x

∂

∂x
(a(t, x)q(t,dx))

= −
[
ϕ(x)

∂

∂x
(a(t, x)q(t, x))

]
∂Yt(R)

+

∫
Yt(R)

ϕ(x)
∂2

∂x2
(a(t, x)q(t,dx))

=

∫
Yt(R)

ϕ(x)
∂2

∂x2
(a(t, x)q(t,dx)) .

To summarize, we have shown that∫
Yt(R)

ϕ(x)
∂q

∂t
(t,dx) =

∫
Yt(R)

ϕ(x)
∂2

∂x2
(a(t, x)q(t,dx)) ,

but this is nothing else than (FP2) in Theorem 1, in the sense of distributions. Thus

the law of the t-marginals of (Yt; t ≥ 0) satisfies the Fokker-Planck equation with the

same a(t, x) as the law of the t-marginals of (Xt; t ≥ 0). Therefore, by Theorem 1, the

laws are the same and by defintion, X and Y are associated.

Step 2. Note one thing about condition expectations: by standard definition, E[X | Y ] is

the unique random variable such that for all bounded and measurable random variables

Z,

E[E[X | Y ]Z] = E[XZ].

Let φ be a real-valued function on the real line that is twice differentiable and such that

φ(x) = 1, |x| ≤ 1,

φ(x) = 0, |x| ≥ 2,

0 ≤ φ(x) ≤ 1, ∀x ∈ R.

Let for all k > 0, φk(x) = xφ(x/k), let h : Rn → R be an arbitrary bounded and

continuous function and let 0 ≤ s1 ≤ · · · ≤ sn ≤ s ≤ t be an arbitrary partition of the

interval [0, t]. Set

γk = E [h(Ys1 , . . . , Ysn)φk(Yt)]− E [h(Ys1 , . . . , Ysn)φk(Ys)] ,
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and m = sup
x∈Rn
{|h(x)|}. Now h(Ys1 , . . . , Ysn)φk(Ys) is a measurable functions that has

the pointwise limit h(Ys1 , . . . , Ysn)Ys. Furthermore |h(Ys1 , . . . , Ysn)φk(Ys)| ≤ m|Ys| and

m|Ys| is integrable since the density of Ys is in Mf . So by dominated convergence,

lim
k→∞

γk = E [h(Ys1 , . . . , Ysn)Yt]− E [h(Ys1 , . . . , Ysn)Ys] .

If we can show that this limit is equal to zero, then by the previous comment on condi-

tional expectation and the fact that h and the partition used were arbitrary, Ys will be

a martingale. Let us start with performing an Itō differentiation on φk. The dynamics

of Yt are from Step 1 known to be

dYt = σ(t, Yt),

d〈Y 〉t = σ2(t, Yt).

Hence, we get

dφk = σ(t, Yt)
∂φk
∂x

(Yt) dBt +
1

2
σ2(t, Yt)

∂2φk
∂x2

(Yt) dt. (2.8)

Integration from s to t of Equation 2.8 yields

φk(Yt)− φk(Ys) =

∫ t

s
σ(u, Yu)

∂φk
∂x

(Yu) dBu +

∫ t

s

1

2
σ2(u, Yu)

∂2φk
∂x2

(Yu) du. (2.9)

Multiplying both sides of Equation 2.9 with h(Ys1 , . . . , Ysn) and taking the absolute

value of them yields,

|h(Ys1 , . . . , Ysn) (φk(Yt)− φk(Ys))| =

∣∣∣∣h(Ys1 , . . . , Ysn)

{∫ t

s
σ(u, Yu)

∂φk
∂x

(Yu) dBu

+

∫ t

s

1

2
σ2(u, Yu)

∂2φk
∂x2

(Yu) du

}∣∣∣∣ (2.10)

≤ m

∣∣∣∣∫ t

s
σ(u, Yu)

∂φk
∂x

(Yu) dBu

+

∫ t

s

1

2
σ2(u, Yu)

∂2φk
∂x2

(Yu) du

∣∣∣∣ .
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Taking the expected value of both sides of Equation 2.10 and rearranging gives us,

starting from γk,

|γk| = |E [h(Ys1 , . . . , Ysn)(φk(Yt)− φk(Ys))]|

≤ E [|h(Ys1 , . . . , Ysn)(φk(Yt)− φk(Ys))|]

≤ mE
[∣∣∣∣∫ t

s
σ(u, Yu)

∂φk
∂x

(Yu) dBu +

∫ t

s

1

2
σ2(u, Yu)

∂2φk
∂x2

(Yu) du

∣∣∣∣]
≤ mE

[∫ t

s

∣∣∣∣σ(u, Yu)
∂φk
∂x

(Yu)

∣∣∣∣ dBu +

∫ t

s

∣∣∣∣12σ2(u, Yu)
∂2φk
∂x2

(Yu)

∣∣∣∣ du

]
= mE

[∫ t

s

1

2
σ2(u, Yu)

∣∣∣∣∂2φk
∂x2

(Yu)

∣∣∣∣ du

]
.

Rewriting the expected value as an integral, where p(t, x) is the density of Yt, and by

the assumption that σ2(t, x)/2 = ∂tC(t, x)/p(t, x) we get

|γk| ≤ m

∫
R

∫ t

s

1

2
σ2(u, x)

∣∣∣∣∂2φk
∂x2

(x)

∣∣∣∣ p(u, x) dudx (2.11)

= m

∫
R

∫ t

s

∂C

∂u
(u, x)

∣∣∣∣∂2φk
∂x2

(x)

∣∣∣∣ dudx.

The derivative of φk in Equation 2.11 has no explicit t-dependence, so it can be moved

outside the inner integral. The derivative of C can then be integrated to is antiderivative,

|γk| ≤ m
∫
R

(C(t, x)− C(s, x))

∣∣∣∣∂2φk
∂x2

(x)

∣∣∣∣ dx.

Note that φk is constant on the set |x| ∈ R\[k, 2k], so ∂xxφk(x) = 0 on R\[k, 2k].

Furthermore, by definition of φk and the chain rule of differentiation,∫ 2k

k

∣∣∣∣∂2φk
∂x2

(x)

∣∣∣∣ dx =

∫ 2k

k

∣∣∣∣ ∂∂x
(
φ
(x
k

)
+
x

k

∂φ

∂x

(x
k

))∣∣∣∣ dx

=

∫ 2k

k

∣∣∣∣1k
(

2
∂φ

∂x

(x
k

)
+
x

k

∂2φ

∂x2

(x
k

))∣∣∣∣ dx

{let x = ky} =

∫ 2

1

∣∣∣∣2∂φ∂y (y) + y
∂2φ

∂y2
(y)

∣∣∣∣ dy.

Observe that the absolute value in the last integral is a continuous function and that

the integration interval is a compact set. Hence the absolute value will have a maximum

over the integration interval, and the left hand side is thus bounded by some n ∈ R. For

our ”main inequality”, this implies that

|γk| ≤ mn sup{C(t, x)− C(s, x) : k ≤ |x| ≤ 2k}.
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By the assumption that E[Yt] is independent of t, Proposition 6 tells us that the family

(p(t,dx); t ≥ 0) is a peacock. Then by Proposition 7,

lim
k→∞
|γk| ≤ mn lim

|x|→∞
sup{C(t, x)− C(s, x)} = 0

By the note on conditional expectation in the beginning of this step of the proof, Yt is

a martingale.

Step 3. It follows straight forward from Theorem 2 that Yt has the Lipschitz-Markov

property.

2.4 Kellerer’s theorem: implications on implied volatility

In this chapter, we will translate the restrictions that Kellerer’s theorem enforce on the

call surface in order for it to be free of static arbitrage into restrictions for the implied

volatility surface. This will be done mainly by working with the Black formula, Equa-

tion (2.4). We begin by defining some new variables that will be used throughout the

rest of this thesis.

A very useful variable when using expressions and formulas from the Black-Scholes

model is the log-moneyness.

Definition 11 (Forward log-moneyness). For a fixed time t, let F[t,t+τ ] be the forward

price of an underlying S at time t+ τ , and let K be the strike price of some call option

written on S at time t with expiry t+ τ . The forward log-moneyness x is defined by

x = log
(
K/F[t,t+τ ]

)
.

When we are interested in a volatility smile, the time dependencies will always be sur-

pressed since we will in these cases treat the time and time to maturity as constants.

The usefulness of the forward log-moneyness lies not only in tiding up messy expressions,

but also in its interpretation as the relative position of the option with respect to the

forward price of the underlying. Other moneynesses can be defined, such as the under-

lying log-moneyness, log(K/St). If nothing else is specified, log(K/F ) will be refered to

only as the moneyness.

It will also be useful to introduce three variables as a complement to σimp. These

three variables intermingle with σimp in the literature. In the defintions below, and the

rest of this section, let τ be the time to maturity for an option.
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Definition 12 (Total implied volatility). The total implied volatility, θimp of an option

with implied volatility σimp, is defined as

θimp =
√
τσimp

Definition 13 (Implied variance). The implied varaince, vimp, of an option with implied

volatility σimp, is defined as

vimp = σ2
imp

Definition 14 (Total implied variance). The total implied variance, wimp, of an option

with implied volatility σimp, is defined as

wimp = τσ2
imp.

Using the total implied volatility together with moneyness has the advantage of simpli-

fying the Black-Scholes auxiliary functions defined in Equation (2.5),

d1(τ,K, τσ2
imp;F, r, t) =

log(F[t,t+τ ]/K) + 1
2τσ

2
imp√

τσ2
imp

= − x

θimp
+
θimp

2
,

d2(τ,K, τσ2
imp;F, r, t) = − x

θimp
− θimp

2
.

We are now facing a conflict in notation. So far, we have used x as the argument of

a call function Cµt(x). In the call function, x has the financial interpretation as the

strike price. It is not wise to use x as a notation both for the strike price and for the

moneyness. Also the variable t in the call function has the financial interpretation of

time to maturity, and therefore this should be changed to τ . Therefore it is nessecary

to make a change in the notation:

Strike: x → K,

Time to maturity: t → τ.

This notation is more in line with what is considered to be standard notation in mathe-

matical finance. The variable x is henceforth reserved for the moneyness and the variable

t is henceforth reserved for the current time.

So what restrictions have to be made on the implied volatility surface in order for

the call surface it defines to be free of static arbitrage? It turns out that it is most

convenient to state the definitions in terms of the total implied volatility, instead of the
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implied volatility. Let us make a slight rewriting of the sufficient conditions implied

by Kellerer’s theorem, to ease a translation into conditions on implied volatility. The

rewriting is stated as a theorem, Theorem 4 below, for clarity.

Theorem 4. An observed surface of call option prices written on some underlying S

expiring at time T ,

C : (0,∞)× R → (0,∞),

(τ,K) 7→ E
[
(ST−τ −K)+

]
,

that is in C2,2 is free of static arbitrage if the following five conditions hold.

(1) ∂τC > 0.

(2) lim
K→∞

C(τ,K) = 0.

(3) lim
K→−∞

C(τ,K) +K = a, a ∈ R.

(4) C(τ,K) is convex in K.

(5) C(τ,K) in non-negative.

Proof. The conditions (1)-(5) arise from the assumptions in Kellerer’s theorem.

Condition (1) is stated as a condition on the call surface in Kellerer’s theorem and

will not be changed.

Condition (2)-(5) imply the existence and uniqueness of a positive p that satisfies

p = ∂KKC through Proposition 4. These are the remaining conditions on the call

surface in Kellerer’s theorem.

We would now like to translate conditions (1)-(5) in Theorem 4 into conditions on

implied volatility. For this, we use the identity CB(τ,K, τσ2
imp) = erτC(τ,K) that was

introduced in Definition 1. Note that some dependencies have been dropped, since they

are not of any interest here.
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Theorem 5. The conditions (1)-(5) on call prices in Theorem 4 are implied by the

following conditions on the implied volatility surface:

(A) ∂τwimp = ∂τθ
2
imp > 0.

(B) lim
K→∞

d1 = −∞.

(C) θimp ≥ 0.

(D)

(
1− x

θimp
∂x (θimp)

)2

−
θ2

imp

4
(∂x (θimp))2 + θimp∂xx (θimp) ≥ 0.

The inequality (D) is sometimes refered to as Durrleman’s condition in the literature

since it first appeared in [15]. It will be called Durrleman’s condition in this thesis.

Proof. (A) implies (1)

In [16], the author provides a nice proof of this. Let us, without loss of generality,

observe the market at time 0 and look at two contracts with the same moneyness, but

with different expiry time, t1 and t2, t1 < t2, written on the same underlying, S. Since

we are at time 0, the expiry time is also the time to maturity. If we want to keep

moneyness constant, we need to require that the two options are written on different

strikes, K1 and K2. From the definition of moneyness, Definition 11, together with the

definition of the forward price, Definition 2, K1 and K2 are related in the following way,

log

(
K1

F[0,t1]

)
= log

(
K2

F[0,t2]

)
, (2.12)

⇔ K1

S0ert1
=

K2

S0ert2
,

⇔ K1 = K2e
−r(t2−t1).

Thus, when differentiating the call price with respect to time to maturity, we do not

have to care about changes in the forward price process. We want to achieve

CBS(t2,K2, t2σ
2
imp) > CBS(t1,K1, t1σ

2
imp). (2.13)

If we multiply both sides of Equation 2.13 by K−1
2 ert2 , we get

ert2CBS(t2,K2, t2σ
2
imp)

K2
>

ert2CBS(t1,K1, t1σ
2
imp)

K1er(t2−t1)

=
ert1CBS(t1,K1, t1σ

2
imp)

K1
.
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Let the moneyness be constant. This implies that F[0,t]/K = e−x is also constant. Then

by Equation C.3, the function

f(wimp) =
ertCBS(t,K,wimp)

K

=
F[0,t]

K
N (d1)−N (d2)

is an increasing function in total implied variance, wimp. Hence, if we assume ∂τwimp > 0,

then the call price CBS will be an increasing function in time to maturity.

(B) and (C) implies (2)

Since (2) follows if the Black call price goes to zero as the strike price goes to infinity,

we can examine the limit of CB instead of the limit of CBS. For the first term of CB,

that is FN (d1), note that only if we have condition (B),

lim
K→∞

d1(τ,K, τσ2
imp) = lim

x→∞
− x

θimp
+
θimp

2
= −∞,

do we have N (d1(τ,K, τσ2
imp)) → 0 as K → ∞. For the second term of CB, that is

KN (d2), note that

d2(τ,K, τσ2
imp) = − x

θimp
− θimp

2
= −1

2

(
2x

θimp
+ θimp

)
. (2.14)

Recall the inequality of arithmetic and geometric means.

Lemma 1. (Arithmetic-Geometric inequality) For any set of n non-negative real num-

bers x1, . . . , xn, ∑n
i=1 xi
n

≥ n

√√√√ n∏
i=1

xi. (2.15)

Since we want to examine the limit when K tends to infinity, K can be assumed to

be positive in the following calculation. The forward price F is a price so it is always

positive and finite. These two facts together imply that for a large enough K, x will be

positive. If we assume that θimp(τ,K, τσ2
imp) ≥ 0, Equation (2.15) applies to the right

hand side in Equation (2.14) and gives us

d2(τ,K, τσ2
imp) = −1

2

(
2x

θimp
+ θimp

)
≤ −

√
2x

θimp
θimp

= −
√

2x.
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Note that since N is a probability distribution, it is an increasing function and therefore

0 ≤ exN
(
d2(τ,K, τσ2

imp)
)
≤ exN

(
−
√

2x
)
.

The right hand term tends to zero when K tends to infinity. The only condition that

we made on θimp here is that is condition (C), that it should be non-negative.

(D) implies (4)

In Equation (C.1), it is derived that

∂KKC
BS = e−rτ∂KKC

B

=
Sn(d1)

K2θimp

((
1−
√
τ
x

θimp
∂x (σimp)

)2

− τ
θ2

imp

4
(∂x (σimp))2

+
√
τθimp∂xx (σimp)

)
.

Since S, n and θimp are non-negative and since θimp =
√
τσimp, the condition we need to

impose to ensure convexity of CBS in K is(
1− x

θimp
∂x (θimp)

)2

−
θ2

imp

4
(∂x (θimp))2 + θimp∂xx (θimp) ≥ 0, (2.16)

in order to insure the convexity of CB in K. Equation (2.16) can also be expressed in

terms of the total implied variance. The following relation is taken from Equation (C.2),

(
1− x

2wimp
∂x (wimp)

)2

− 1

4

(
1

wimp
+

1

4

)(
∂x (wimp)

)2
+

1

2
∂xx (wimp) ≥ 0.

(B), (C) and (D) imply (3)

If (B), (C) and (D) hold then the call price is a convex, non-increasing function of K.

Since the call price is assumed to be twice differentiable, the following limit exists

lim
h→0

C(τ,K + h)− C(τ,K)

h
. (2.17)

By Proposition 5 i), for all h > 0 the numerator satisfies

K − (K + h) ≤ C(τ,K + h)− C(τ,K) ≤ 0. (2.18)
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Applying Equation (2.18) and the definition of the partial derivative to Equation (2.17),

we get

−1 ≤ ∂KC(τ,K) ≤ 0.

A similar argument to that which was made in Theorem 2.1 of [12] can be done for the

previous inequality, leading to the limit

lim
K→−∞

∂KC(τ,K) + 1 = 0. (2.19)

Integrating Equation (2.19) with respect to K yields∫
lim

K→−∞
∂KC(τ,K) + 1 dK = a, a ∈ R.

Note that the explicit expression for the partial derivative is

∂KC(τ,K) =
(
(St −K)+ + 1

)
∂Kµτ (St).

Note furthermore that if we let fn be defined by

fn(K) =

((
St −

1

n
−K

)+

+ 1

)
∂Kµτ (St),

then {fn} is a non-decreasing sequence of positive, measurable functions that converge

pointwise to ∂KC(τ,K). Hence the monotone convergence theorem is applicable and we

can move the limit outside the integral to obtain the result,

a =

∫
lim

K→−∞
∂KC(τ,K) + 1 dK

= lim
K→−∞

∫
∂KC(τ,K) + 1 dK

= lim
K→−∞

C(τ,K) +K.

The Black-Scholes model implies (5)

The implied volatility is derived from the Black-Scholes model and therefore all assump-

tions of the Black-Scholes model will hold true for the implied volatility we calculate

using the model. The Black-Scholes call price formula is derived as the unique solution

to the Black-Scholes partial differential equation. This equation also has a call function

of the form which was introduced in Defintion 8 as solution by the discounted Feynman-

Kac theorem. Recall that a call function is an integral of a non-negative function with

respect to a probability measure. Therefore, the Black-Scholes model implies that the

call surface will be non-negative.
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2.5 Asymptotic bounds on the implied volatility smile

As was introduced in Definition 1, the implied volatility is the variable σimp that uniquely

solves

erτC(τ,K) = CB(τ,K, τσ2
imp).

As before, let x denote the forward log-moneyness. Furthermore, let g(x) ∼ f(x) if

g(x)/f(x)→ 1 as x→∞.

The intuition behind the result of this section is that it is crucial to match the asymp-

totics of CB(τ,K, τσ2
imp) with the asymptotics of C(τ,K), because if they are to agree

for all K, we need to have C ∼ CB. This forced matching will have implications on

the implied volatility. Let us investigate the limit behaviour of CB and C as K goes to

infinity and consolidate the intuition. As in many mathematical derivations, a special

function appears that suits our needs well,

f1(y) =

(
1
√
y
−
√
y

2

)2

,

f2(y) =

(
1
√
y

+

√
y

2

)2

.

Note that d1 and d2 can be expressed in terms of the functions f1 and f2,

d1(τ,K, τσ2
imp) = −

(
x

θimp
− θimp

2

)
= −

√
x

(
1

θimp/
√
x
− θimp/

√
x

2

)

= −
√
x

 1√
θ2

imp/x
−

√
θ2

imp/x

2


= −

√
xf1(θ2

imp/x).

An analogous calculation can be made to show that

d2(τ,K, τσ2
imp) = −

√
xf2(θ2

imp/x).

With the functions f1 and f2 at hand, we get a nice expression of the Black call price

when σimp =
√
βx where β is a positive number,

CB(τ,K, τβx) = F
(
N (−

√
xf1(β))− exN (−

√
xf2(β))

)
. (2.20)
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Since we want to investigate the limit when K goes to positive infinity, we may without

loss of generality assume that βx > 0 and the implied volatility in Equation (2.20) is

therefore well defined. Equation (2.20) allows us to study the asymptotics of the Black

call price when the implied variance is linear in moneyness. Through partial integration

an asymptotic approximation can be derived for N (y). Using the fact that ∂yN (y) is

an even function,

N (−y) =
1√
2π

∫ −y
−∞

e−t
2/2 dt

=
1√
2π

∫ ∞
y

e−t
2/2 dt

=
1√
2π

∫ ∞
y2/2

s−1/2e−s ds

=
1√
2π

(
e−y

2/2

y
− 1

2

∫ ∞
y2/2

s−3/2e−s ds

)
.

Since both s−3/2 and e−s are decreasing functions on
[
y2/2,∞

)
, the integral on the right

hand side can be bounded,∣∣∣∣∣
∫ ∞
y2/2

s−3/2e−s ds

∣∣∣∣∣ ≤ 1

y3

∫ ∞
x2/2

e−s ds

≤ e−y
2/2

y3
.

Hence we have that

N (−y) ∼ e−y
2/2

y
√

2π
, y →∞. (2.21)

Using that f1(β) + 2 = f2(β) together with the asymptotics from Equation (2.21), the

asymptotics of CB can be retrieved,

CB(τ,K, τβx) = F
(
N (−

√
xf1(β))− exN (−

√
xf2(β))

)
∼ F√

2π

(
e−xf1(β)/2√
xf1(β)

− exe−xf2(β)/2√
xf2(β)

)

=
F√
2πx

(
e−xf1(β)/2√

f1(β)
− exe−x(f1(β)+2)/2√

f2(β)

)

=
e−xf1(β)/2

B(β)
√
x
.

Here B is a function depending only on β. Having established the asymptotic properties

for CB for large strikes, now we need to do the same for C. Recall from Section 2.3

C(τ,K) = E[(St −K)+],
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where St is the underlying’s price process. Inspired by [17], Lee derives an upper bound

for C in [18] which suits our needs better than the standard bound C(τ,K) ≤ E[St].

Note that for each p > 0 and for all s ≥ 0,

s− x ≤ sp+1

p+ 1

(
p

p+ 1

)p
e−xp, ∀x > 0,

since both sides of the inequality, if viewed as functions of s, have equal values and first

derivatives at s = (p + 1)x/p, but the right hand side has a positive second derivative.

Note furthermore that the right hand side is non-negative, so

(s− x)+ ≤ sp+1

p+ 1

(
p

p+ 1

)p
e−xp.

Exchanging s for the underlying St and taking expectations yields

C(τ,K) ≤ E[Sp+1
t ]

1

p+ 1

(
p

p+ 1

)p
e−xp. (2.22)

Hence, if St has finite p+ 1th moment, then C(τ,K) = O(e−xp) as x→∞. Comparing

the asymptotics of CB and C, we see that they agree if f1(β)/2 = p. This idea, that

the tail behaviour of the implied volatility smile carries the same information as the

tail behaviour of the the option prices was made rigorous by Lee in [18]. He uses the

connection between option prices and the number of finite moments of the underlying.

This connection surley sounds reasonable, since option prices are bounded by moments

by (2.22) and, since power payoffs are mixtures of call and put payoffs across a continuum

of strikes, moments are bounded by option prices.

Theorem 6 (Lee’s Large Strike Moment Formula). Let

p̂ = sup
{
p ∈ (0,∞) : E

[
S1+p
t

]
<∞

}
,

βlarge = lim sup
x→∞

σ2
imp(K)

|x|

Then βlarge ∈ [0, 2] and

p̂ =
1

2βlarge
+
βlarge

8
− 1

2
,

where 1/0 :=∞. Equivalenty, p ∈ [0,∞] and

βlarge = 2− 4
(√

p̂2 + p̂− p̂
)
.

Proof. The proof is divided into three steps. In the first step we prove that βlarge ∈ [0, 2],

in the second step we show that p̂ ≤ f1(βlarge)/2 and in the third step we show the com-

plementary inequality which together with the second step implies that p̂ = f1(βlarge)/2.
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Step 1. If there exists an x̂ > 0 such that for all x > x̂,

σimp <
√

2|x|,

then by the definition of βlarge in the theorem statement, βlarge ∈ [0, 2]. This is equivalent

to

CB(τ,K, τσ2
imp) < CB(τ,K, τ2|x|), x > x̂, (2.23)

since CB is strictly increasing in the first argument. We know from the definition of

implied volatility that the left hand side of (2.23) is equal to C(τ,K) = E [(St −K)+].

Now {(St −K)+}x>0 is a family of non-negative random variables that converge to 0 as

x goes to infinity and are bounded from above by Sτ . Furthermore, E[St] <∞ since we

have assumed that the call prices exist. Then, by dominated converge,

lim
x→∞

C(τ,K) = lim
x→∞

E
[
(Sτ −K)+

]
= 0.

For the right hand side of (2.23), note that

CB(τ,K, τ2|x|) = F
(
N (0)− exN (−

√
2|x|)

)
= F

(
1

2
− exN (−

√
2|x|)

)
.

By l’Hopital’s rule,

lim
x→∞

N (−
√

2|x|)
e−x

= lim
x→∞

2(2|x|)−1/2e−(−
√

2|x|)2/2

e−x
= lim

x→∞

√
2e−x√
|x|e−x

= 0,

so

lim
x→∞

CB(τ,K, τ2|x|) =
F

2
,

and the first step of the proof is finished.
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Step 2. In the this and the third step, we need a special limit. For β ∈ (0, 2) and a

constant c,

lim
x→∞

e−cx

CB(τ,K, τβ|x|)
= lim

x→∞

e−cx

F
(
N (−

√
xf1(β))− exN (−

√
xf2(β))

)
= lim

x→∞

ce−cx

F

(
n
(
−
√
xf1(β)

)√f1(β)

x
− exn

(
−
√
xf2(β)

)√f2(β)

x

)

= lim
x→∞

ce−cx

F

(
e−xf1(β)/2

√
f1(β)

x
− exe−xf2(β)/2

√
f2(β)

x

)

= lim
x→∞

ce−cx

F

(
e−xf1(β)/2

(√
f1(β)

x
−
√
f2(β)

x

))

= lim
x→∞

c

F

( √
x√

f1(β)−
√
f2(β)

)
ex(f1(β)/2−c)

=

{
0, c > f1(β)/2,

∞, c ≤ f1(β)/2.

Let β ∈ (0, 2) and p ∈ (f1(β)/2, p̂) where p̂ is defined as in the theorem statement. By

(2.22) and the previous limit we have that when x→∞,

CB(τ,K, τσ2
imp)

CB(τ,K, τβ|x|)
=

O(e−px)

CB(τ,K, τβ|x|)
→ 0. (2.24)

Note now that f1(β) is strictly decreasing when β ∈ (0, 2). This implies that for

any β ∈ (0, 2) with f1(β)/2 < p̂, we have βlarge ≤ β and hence we need to have

p̂ ≤ f1(βlarge)/2 in order for the limit (2.24) to be a constant.

In the case when this last step is vacuously true, that is if there exists no β ∈ (0, 2)

such that f1(β)/2 < p̂, we have by the definition in the statement of the theorem that

βlarge = 0 and p̂ = f1(βlarge)/2 =∞.
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Step 3. In this step we will prove the complementary inequality, p̂ ≥ f1(βlarge)/2. From

the defintion of p̂, we see that it is enough to show that for any p ∈ (0, f1(βlarge)/2),

E
[
S1+p
τ

]
is finite. To show this, we pick β such that f1(β)/2 ∈ (p, f1(βlarge)). Then, as

earlier, for large enough x,

C(τ,K)

e−xf1(β)/2
≤ CB(τ,K, τβ|x|)

e−xf1(β)/2
→ 0, as x→∞.

Thus there exists a K∗ so that for K > K∗, C(τ,K) < K−f1(β)/2. Using the spanning

relation from Appendix B with k = 0, we have

E
[
Sp+1
t

]
= E

[∫ ∞
0

(p+ 1)pKp−1(St −K)+dK

]
≤ (p+ 1)p

[∫ K∗

0
Kp−1C(τ,K)dK +

∫ ∞
K∗

Kp−1−f1(β)/2dK

]
<∞.

There is a corresponding theorem for small strikes. An analogous proof as the one for

the large strike formula can be done, but a shorter one was presented in [19] that builds

on what we already know from the large strike formula. Since the proofs are similar to

a great extent, the proof is omitted.

Theorem 7 (Lee’s Small Strike Moment Formula). Let

q̂ = sup
{
q ∈ (0,∞) : E

[
S−qt

]
<∞

}
,

βsmall = lim sup
x→−∞

σ2
imp(K)

|x|t
.

Then βsmall ∈ [0, 2] and

q̂ =
1

2βsmall
+
βsmall

8
− 1

2
,

where 1/0 :=∞. Equivalently, q̂ ∈ [0,∞] and

βsmall = 2− 4
(√

q̂2 + q̂ − q̂
)
.

The implications on the characteristics of implied volatility from Theorem 6 and Theo-

rem 7 are important. The theorems determine that the implied volatility cannot grow

faster than
√
|x|. That is, for large enough |x|, σimp has to be smaller or equal to

√
β|x|.

Furthermore, unless St has finite moments of all orders which corresponds to the case

where β = 0, the implied volatility cannot grow slower than
√
|x|.



Chapter 3

Parameterization of the implied

volatility

A parametric model of the implied volatility comes with certain advantages. Observed

implied volatilities, and hence call prices, can be inter- and extrapolated. Therefore a

parametric implied volatility model can be used to price new contracts for which there

are no quotes on the market. The implied volatility in a parametric model is function

of strike and maturity with an explicit analytical expression. If the implied volatility

is modeled as a smooth function it will also admit analytical explicit expression for its

derivatives of all orders possibly saving computational time. A parametric model have

to satisfy the conditions derived in Chapter 2 to be considered as feasible.

There exist several popular models for stochastic implied volatility, with the most popu-

lar being Stochastic Volatility Inspired (SVI) parameterization [1], the Stochastic alpha,

beta, rho (SABR) parameterization [20] and Vanna-Volga (VV) model. We are con-

cerned with the SVI, but it could be of some interest to mention some properties and

limitations of the other models.

This chapter starts with a short examination of the three mentioned models. After

this follows a summary of the different variations of the SVI parameterization that were

introduced in [2] together with their interpretation. Finally, this chapter ends with a

summary of the work in [2] that treats conditions on the SVI parameters that guarantee

the absence of static abitrage in the implied volatility they define.

36
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3.1 Popular stochastic volatility models

Stochastic volatility inspired (SVI)

The SVI parameterization of the total implied variance for a fixed time to maturity

reads,

wSVI
imp(x) = a+ b

(
ρ(x−m) +

√
(x−m)2 + σ2

)
, (3.1)

where x is moneyness and {a, b, σ, ρ,m} is the parameter set. The SVI parameter σ

is not to be confused with the volatility of the underlying’s price process, which is also

denoted by σ! The first strength of the SVI is demonstrated in the following proposition.

Proposition 8. The SVI parameterization in Equation (3.1) satisfies Lee’s large and

small strike formulas.

Proof. The right asymptote is by [1]

(
wSVI

imp

)
r

(x) = a+ b(1− ρ)(x−m).

The left asymptote is by [1]

(
wSVI

imp

)
l
(x) = a− b(1 + ρ)(x−m).

They are both linear in moneyness hence satisfy Lee’s formula.

Note that these asymptotes imply through Lee’s large and small strike formulas that

the distribution of the underlying’s price process has finite moments of all orders. This

is a model limitation of the SVI, since by [19] the implied volatility may grow slower

than
√
x when the distribution on the underlying’s price process does not have finite

moments of all orders, because of for example fat tails. Work such as [21] and [22] tries

to solve this by introducing more parameters into Equation (3.1), but these two models

and their implementation is outside the area of interest for this thesis.

The second strength of the SVI model was established in [23]. It was shown that the

implied volatility in the Heston model converges to the SVI in the long maturity limit.

The Heston model assumes the same dynamics for the implied variance as was done in

Chapter 2.1, but assigns the coefficients in Equation (2.6). The implied variance in the

Heston model follows the dynamics

dvimp = θ(ω − vimp)dt+ η
√
vimpdB1

t . (3.2)
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Here, ω is a long-time mean value of the variance and θ is the rate at which the variance

reverts towards ω. The volatility of the variance process is η. This choice of dynamics

is built on three assumptions, namely that the variance of S is a random process that

1. has a tendency to revert towards its long-term mean at some constant rate,

2. has a volatility that is proportional to the square root of its level,

3. has a source of randomness that is correlated with the randomness of the under-

lying’s price process.

The assumption about mean reversion is often deemed as being the cause of mean re-

version. If traders believe in the assumption of mean reversion, then traders will sell

contracts when they are worth more than the long-term mean and buy when the con-

tracts are worth less than the long term mean. Through their actions on the market,

the traders will cause mean reversion.

The second assumption can be motivated by the observation of volatility clustering.

In Figure 3.1 daily returns for the S&P 500 index are plotted. It is visible that larger

movements cluster together and are interupted by periods of smaller movements. Heuris-

tically, we see that the size of the movements depends on the size of the movements.

The third assumption was motivated in Chapter 2.1.

Stochastic alpha, beta, rho (SABR)

The underlying’s price process is in the SABR modeled with the following dynamics,

dSt = σtS
β
t dB0

t ,

dσt = ασtdB
1
t ,

〈dB0
t , dB

1
t 〉 = ρdt,

where B0 and B1 are standard Brownian motions, β ∈ [0, 1] is a skewness parameter,

α ≥ 0 is the volatility of volatility and ρ ∈ [−1, 1]. A flaw in the SABR model is the lack

of mean reversion, which makes it suitable for options with short time to maturity only.

A strength of the SABR model is that it yeilds an explicit formula in the short time

to maturity limit, which makes it possible to fit the parameters β, α and ρ to market

data. The retrieved function with the fitted parameters can then be expanded using

Taylor’s formula to yield approximate implied volatilities to options with non-zero, but

short, times to maturity. This is done for example in [1]. The SABR model is especially

popular in the interest rate derivative markets.
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Figure 3.1: The daily log returns of S&P 500 from January 3rd 1950 until today. A
slight clustering is visible. Data from finance.yahoo.com/ on 7/14/2014.

Vanna-Volga (VV)

The VV model is not based on assumptions on the underlying’s price process but on

a hedge of three big risks associated with the volatility of an option. The three risks

are called vega, vanna and volga in the finance lingo. The vega is the sensitivity of the

option value towards a change in implied volatility, the vanna is the sensitivity of the

vega with respect to a change in the underlying’s price process and finally the volga is

the sensitivity of the vega with respect to changes in the implied volatility. A portfolio

which hedges these three risks is created, and the Black-Scholes value of the option is

adjusted by the value of this portfolio. The implied volatility can then be found by an

inversion. The procedure is thoroughly explained in [24]. In [24], it is mentioned that

the VV model does not guarantee convexity of the call prices, thus exposing the model

to static arbitrage. The VV model is popular in the foreign exchange market.
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3.2 SVI parametrizations and their interpretation

In [2], three equivalent versions of the SVI parameterization in Equation 3.1 are intro-

duced; the raw, the natural and the jump-wing.

Natural parametrization

The natural parametrization of the SVI total implied variance reads

wSVI
imp(x) = ∆ +

ω

2

(
1 + ηρ(x− µ) +

√
(η(x− µ) + ρ)2 + (1− ρ2)

)
.

The natural parameterization is the functional form that appears as the limit of the

Heston model. Unaesthetic expressions of ω and η in terms of the Heston parameters

from Equation 3.2 can be found in [23], while ρ is simply the correlation between the

Brownian motions driving the underlying’s price process and the variance process and

∆ and µ are vertical and horizontal shifts respectively. The natural parameterization is

not as useful implementationwise as the two subsequent parameterizations.

Raw parametrization

The raw parametrization of SVI total implied variance reads

wSVI
imp(x) = a+ b

(
ρ(x−m) +

√
(x−m)2 + σ2

)
.

This is the most frequently used version of the SVI parameterization in the litterature

and it is also the original parameterization, introduced first in [1]. The effects on the

volatility smile of the raw parameters are listed below:

• Increasing a results in a vertical translation of the smile in the positive direction.

• Increasing b decreases the angle between the put and call wing, i.e. tightens the

smile.

• Increasing ρ results in a counter-clockwise rotation of the smile.

• Increasingm results in a horizontal translation of the smile in the positive direction.

• Increasing σ reduces the at-the-money curvature of the smile.

At-the-money is the financial term for the point x = 0, the point where the strike price is

equal to the forward price. These properties of the raw parameters have been visualized

in many articles, for example in [1].
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Having bounds on the feasible region of these parameters is very useful when imple-

menting the SVI model, since we will eventually have to do an optimization to find

the, in some sense, best parameter set for an input data set. From the properties listed

above, some obvious bounds for the raw parameters can be deduced. First of all, it is

an empirical fact that volatility smiles have a positive at-the-money curvature. Hence

we impose

σ > 0. (3.3)

This bound has also computational advatages that will become clear to the reader in

Chapter 4.3. The same fact also forces us to impose

b ≥ 0. (3.4)

Furthermore, we dont want an optimal parameter set to give a total implied variance

curve that is systematically greater than the largest observed total variance. If {wi} are

the observed total variances we want to fit our SVI to, we impose

a ≤ max
i
{wi}. (3.5)

By the same reasoning, if {xi} are the moneynesses corresponding to the observed total

variances, we impose

m ≥ 2min
i
{xi}, (3.6)

m ≤ 2max
i
{xi}. (3.7)

Finally, since ρ is the correlation between the Brownian motions driving the underlying’s

price process and the underlying’s variance process we need to have

ρ ∈ [−1, 1]. (3.8)

More bounds will be derived in Chapter 4.3, but from a more analytical point of view.

A final note about the raw parameters is that they relate to the natural parameters in

the following way,

(a, b, ρ,m, σ) =

(
∆ +

ω

2
(1− ρ2),

ωη

2
, ρ, µ− ρ

η
,

√
1− ρ2

η

)
,

(∆, µ, ρ, ω, η) =

(
a− ω

2
(1− ρ2),m+

ρσ√
1− ρ2

, ρ,
2bσ√
1− ρ2

,

√
1− ρ2

σ

)
.

These relations give the possibility of an interpretation of the raw parameters in terms

of the Heston model parameters.
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Jump-Wing (JW) parameterization

The JW parameterization is defined in terms of the raw parameters,

vτ =
a+ b

(
−ρm+

√
m2 + σ2

)
τ

, (3.9)

ψτ =
1
√
wτ

b

2

(
ρ− m√

m2 + σ2

)
,

pτ =
1
√
wτ
b(1− ρ),

cτ =
1
√
wτ
bt(1 + ρ),

v̂τ =
1

τ

(
a+ bσ

√
1− ρ2

)
,

where wτ = vττ . Note that this parameterization depends explicitly on the time to

maturity, τ . In [2], an inversion formula for Equation (3.9) is presented. The parameters

are more tractable for traders than the two previous parameterization. More importantly

for the aim of this thesis, there is literature on how to find conditions on them to prevent

static arbitrage in the implied volatility surface. That will be the topic of Chapter 3.3.

The tractability comes from the interpretations of the parameters, which are presented

below.

• vτ is the at-the-money implied variance. This is easily seen, since in the raw

parameterization vτ = wSVI
imp(x)/τ

∣∣∣
x=0

.

• ψτ is the at-the-money implied volatility skew. This requires some calculation,

∂x

√
wSVI

imp(x)

τ

∣∣∣∣∣∣
x=0

=
1

2
√
wSVI

imp(x)τ

∣∣∣∣∣∣
x=0

∂xw(x)|x=0

=
1

2
√
vττ

b

(
ρ+

2x− 2m

2
√

(x−m)2 + σ2

)∣∣∣∣∣
x=0

=
1
√
wτ

b

2

(
ρ− m√

m2 + σ2

)
= ψτ .

• pτ is the slope of the left wing, the part of the smile corresponding to out-of-the-

money put options, scaled with the at-the-money total implied volatility,

lim
x→−∞

wSVI
imp(x)

x
= lim

x→−∞

1

x

(
a+ b

(
ρ(x−m) +

√
(x−m)2 + σ2

))
= lim

x→−∞

a

x
+ b

(
ρ
(

1 +
m

x

)
+

√(
1 +

m

x

)2
+
(σ
x

)2
)

= b(ρ+ 1) = pτ
√
wτ
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• cτ is the slope of the right wing, the part of the smile corresponding to out-of-

the-money call options, scaled with the at-the-money total implied volatility. The

calculation is analoguous to that for pτ .

• v̂τ is the minimum level implied variance. This was seen in the examination of the

raw parameters.

3.3 The restriction: SSVI

We begin this section by introducing two standard definitions from the literature. Recall

the conditions from Theorem 5.

Definition 15 (Butterfly arbitrage). For a fixed and positive real τ , the implied volatil-

ity smile σimp(τ,K)|τ=τ0
is free of butterfly arbitrage if and only if conditions (B) and

(D) from Theorem 5 are satisfied.

Definition 16 (Calendar spread arbitrage). An implied volatility surface σimp(τ,K) is

free of calendar spread arbitrage if and only if condition (A) from Theorem 5 is satisfied.

Together with condition (C) from Theorem 5, absence of butterfly and calendar spread

arbitrage is equivalent to absence of static arbitrage. As was discussed in the proof of

Theorem 5, condition (C) will always be satisfied since we are using the implied volatility

implied by the Black-Scholes call price formula.

With a parameterization, we could now calibrate the parameters to fit input volatil-

ity data, but we would like to do this in such a way that the output call prices are free

of static arbitrage. In literature such as [2] and [25], the authors express hopelessness

in front of the task to state conditions for the SVI parameters in order to guarantee

no butterfly arbitrage. On the other hand, the easiness of eliminating calendar spread

arbitrage is pronounced as a great strenth of the SVI model. The problem with butterfly

arbitrage was partly solved in [2] where the authors propose a new parameterization for

the total implied variance which they name Surface SVI (SSVI),

wSSVI
imp (τ, x) =

θτ
2

(
1 + ρxφ(θτ ) +

√
(xφ(θτ ) + ρ)2 + (1− ρ2)

)
.

The requirements on the new parameters θt and φ are that θt has to be positive and

φ has to be a smooth function from (0,∞) to [0,∞). As earlier, ρ can take values

in [−1, 1]. Note that the SSVI parameterization is the natural parameterization with

its parameters restricted as (∆, µ, ρ, ω, η) = (0, 0, ρ, θt, φ(θt)). Hence, the number of
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variables that the parameterization depends on has gone down from five to three. Note

also that θt is the at-the-money total implied variance.

Proposition 9. The JW parameters corresponding to the SSVI are

vt = θt/t,

ψt =
1

2
ρ
√
θtφ(θt),

pt =
1

2

√
θtφ(θt)(1− ρ),

ct =
1

2

√
θtφ(θt)(1 + ρ),

v̂t =
θt
t

(
1− ρ2

)
.

Proof. In the calculations below, text under the equality sign denotes change of param-

eterization. The leftmost term is always stated in the JW parameterization.

vt =
Raw

1

t

(
a+ b

(
−ρm+

√
m2 + σ2

))
=

Natural

1

t

∆ +
ω

2

(
1− ρ2

)
+
ωη

2

−ρ(µ− ρ

η

)
+

√√√√(µ− ρ

η

)2

+

(√
1 + ρ2

η

)2



=
SSVI

1

t

(
θt
2

(
1− ρ2

)
+
θtφ(θt)

2

(
ρ2

φ(θt)
+

√
ρ2

φ(θt)2
+

1 + ρ2

φ(θt)2

))

=
1

t

(
θt
2
− θtρ

2

2
+
θtρ

2

2
+
θt
2

)
=
θt
t
,

ψt =
Raw

1
√
wt

b

2

(
ρ− m√

m2 + σ2

)

=
Natural

1√
vtt

ωη

4

ρ− µ− ρ
η√(

µ− ρ
η

)2
+
(√

1−ρ
η

)2


=

SSVI

1√
θt

θtφ(θt)

4

ρ+
ρ

φ(θt)
√

ρ2

φ(θt)2
+ 1−ρ2

φ(θt)2


=

1

2
ρ
√
θtφ(θt),
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pt =
Raw

1
√
wt
b(1− ρ)

=
Natural

1√
vtt

ωη

2
(1− ρ)

=
SSVI

1√
θt

θtφ(θt)

2
(1− ρ)

=
1

2

√
θtφ(θt)(1− ρ),

ct =
Raw

1
√
wt
b(1 + ρ)

=
SSVI

1

2

√
θtφ(θt)(1 + ρ),

v̂ =
Raw

1

t

(
a+ bσ

√
1− ρ2

)
=

Natural

1

t

(
∆ +

ω

2
(1− ρ2) +

ωη

2

√
1− ρ2

η

√
1− ρ2

)
=

1

t

(
∆ + ω(1− ρ2)

)
=

SSVI

θt
t

(1− ρ2).

Using the SSVI, sufficient conditions for absence of static arbitrage are stated in [2].

Theorem 8. The SSVI is free of butterfly arbitrage if

(1) θτφ(θτ ) (1 + |ρ|) < 4,

(2) θτφ(θτ )2 (1 + |ρ|) ≤ 4.

Proof. The proof is omitted. It is based on a rewriting of condition (D) of Theorem 5,

Durrleman’s condition, and can be found in [2].

Theorem 9. The SSVI is free of calendar spread arbitrage if and only if

(1) ∂τθτ ≥ 0,

(2) 0 ≤ ∂θτ
(
θτφ(θτ )

)
≤ 1

ρ2

(
1 +

√
1− ρ2

)
φ(θτ ).

Proof. The proof is omitted. It is based on a rewriting of condition (A) of Theorem 5,

∂τwimp ≥ 0, and can be found in [2].
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Using Proposition 9, Theorem 8 can be translated into the JW parameterization.

Proposition 10. The SSVI is free of butterfly arbitrage if

(1)
√
vττ max(pτ , cτ ) < 2,

(2) (pτ + cτ ) max(pτ , cτ ) ≤ 2.

Proof. Note that (1 + |ρ|) < a if and only if max
(
1 − ρ, 1 + ρ

)
< a. Using this, (1) is

given by

√
vττ max(pτ , cτ ) =

√
θτ max

(
1

2

√
θτφ (θτ ) (1− ρ),

1

2

√
θτφ (θτ ) (1 + ρ)

)
=

θτφ(θτ )

2
max

(
1− ρ, 1 + ρ),

and (2) is given by

(pτ + cτ ) max(pτ , cτ ) =
1

2

√
θτφ(θτ )(1− ρ+ 1 + ρ)

√
θτφ(θτ )

2
max

(
1− ρ, 1 + ρ)

=
θτφ(θτ )2

2
max(1− ρ, 1 + ρ).

Suppose that we have calibrated an SVI to some input data and know the calibrated

JW parameters. Then [2] tells us that if we fix the JW parameters vτ , ψτ and pτ of this

smile and the repick cτ and v̂τ as

cτ = pτ + 2ψτ , (3.10)

v̂τ = vτ
4pτ cτ

(pτ + cτ )2 , (3.11)

then by Proposition 10 we are guaranteed to have a smile that is free of butterfly

arbitrage. Another way to do this is to fix vτ , ψτ and cτ and the repick pτ and v̂τ

using Equation (3.10) and Equation (3.11). This result will be a main component in the

calibration algorithm, which is presented in the next chapter.



Chapter 4

Parameter calibration

In this chapter a method to calibrate the SVI parameters to market data will be pre-

sented. The line of work is close to, and inspired by, the work of [26] and [27]. First,

the parameter bounds of Chapter 3.2 are complemented so that we have a lower and

an upper bound for all the raw parameters. Then a new parameterization, called the

Quasi-Explicit parameterization, is introduced. Finally the necessary optimization is

reviewed and the calibration algorithm is summarized. Related to this chapter is Ap-

pendix A where the optimization algorithm that was used, the Nelder-Mead method, is

described.

4.1 More parameter bounds

Recall the raw SVI parameterization of the total implied variance,

wSVI
imp(x) = a+ b

(
ρ(x−m) +

√
(x−m)2 + σ2

)
.

If ρ2 6= 1, then wSVI
imp(x) has the unique minimum a+ bσ

√
1− ρ2. If ρ = 1, then wSVI

imp(x)

is non-decreasing and if ρ = −1, then wSVI
imp(x) is non-increasing.

If σ goes to 0, then wSVI
imp(x) becomes a piecewise affine function of the form c1x+c2. This

will cause the calibration to be an ill-posed problem. An example from [26] illuminates

this. If we let σ go to 0 and let m be greater than the largest observed moneyness then

c1 = b(ρ− 1),

c2 = a− bm(ρ− 1),

which leaves us with infinitely many choices of the triplet (a, b, ρ). Some bounds have to

be imposed to prevent an optimization algorithm to get stuck. To make a good decision

47
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we need to take a look at another case. Let σ go to infinity and let at the same time a

go to negative infinity. Using a Taylor expansion and the ∼ notation from Chapter 2.5,

we get for large σ and negative a that

wSVI
imp(x) = a+ b

(
ρ(x−m) +

√
(x−m)2 + σ2

)
= −|a|+ bρ(x−m) + bσ

√
1 +

(
x−m
σ

)
∼ −|a|+ bρ(x−m) + bσ

(
1 +

1

2

(
x−m
σ

))
.

Letting |a| = bσ, we get

lim
σ→∞
a→−∞
|a|=bσ

wSVI
imp(x) = bρ(x−m).

In this affine smile, we can find bρ and m, but not the triplet (b, ρ,m) uniquely. To solve

these problems above, and gain stability in an optimization, we set a lower bound for a,

a ≥ 0, (4.1)

and reset the lower bound for σ from Equation 3.3,

σ ≥ σmin > 0. (4.2)

The value of σmin is a user choice, but should be picked to be very small in comparison

to typical parameter values.

No upper bound can be derived for σ, but a small integer always does the job. An

implementation using for example

σ ≤ 10 (4.3)

would certainly cover all smiles appearing from market input data since such a large σ

lifts the whole smile above 100% total implied variance, but if computer power is the

limitation a smaller integer such as 1 is also a good choice for the upper bound.

In [28] the authors derive a necessary condition for the absence of dynamic arbitrage for

the total implied variance that reads

|∂xwimp(x)| ≤ 4, ∀x, ∀τ.
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This is a condition that is widely used in the SVI literature, because it yields an upper

bound for b,

b ≤ 4

τ (1 + |ρ|)
. (4.4)

Let us end this section with a summary of all bounds that we have derived for the raw

parameters:

0 ≤ a ≤ max
i
{wi}, (4.5)

0 ≤ b ≤ 4

τ (1 + |ρ|)
,

−1 ≤ ρ ≤ 1,

min
i
{xi} ≤ m ≤ max

i
{xi},

0 < σmin ≤ σ ≤ 10 (or another ”large” number).

4.2 A new parameterization

The more parameters to calibrate, the more computing power is needed to do each

optimization. In the SVI model there are 5 parameters and if a dimension reduction

was possible it would speed up the calibration of the SVI. An observation in this line of

though was made in [26]. Let

y(x) =
x−m
σ

.

Under this change of variables, the total implied variance in the raw parameterization

reads,

wSVI
imp(x) = a+ bσ

(
ρy(x) +

√
y(x)2 + 1

)
(4.6)

= â+ dy(x) + cz(x),

where

â = a, d = ρbσ,

c = bσ, z(x) =
√
y(x)2 + 1.

Observe that given a value of (σ,m), wSVI
imp(x) in Equation (4.6) depends linearly on

â, d, c. This ”split” of the parameter set, into a linear and a non-linear part, will be

extremely useful in the optimization that is to follow. The parameterization in Equa-

tion (4.6) will henceforth be refered to as the Quasi-Explicit (QE) parameterization,

inspired by the name of the paper where it was first defined.
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The parameters â, d, c will from now on be refered to as the inner parameters and σ,m

as the outer parameters.

Before we move on to the optimization, a word of caution to anyone who wants to

implement this. In the article [26], the authors have incorrectly stated that wSVI
imp is the

implied variance, instead of the total implied variance. Therefore, they have an extra τ

factor throughout the paper.

4.3 Optimization

Translating the ten bounds in Equation 4.5 into bounds for the inner parameters â, d, c

in the Quasi-Explicit parameterization, we see that the triplet (â, d, c) has a compact

and convex domain in R3,

D =


(â, d, c) :


0 ≤ c ≤ 4σ

|d| ≤ c
|d| ≤ 4σ − c
0 ≤ â ≤ max

i
{wi}


,

where {wi} is as in Equation (3.5) the input set of observed total variances. For a fixed

pair (σ,m), we are facing the optimization

min
(â,d,c)∈D

fxi,wi(â, d, c), (4.7)

where fxi,wi is the quadratic cost function,

fxi,wi(â, d, c) =
n∑
i=1

(â+ dy(xi) + cz(xi)− wi)2 .

Note that fxi,wi is a smooth and convex function. Hence by a standad theorem from

calculus, f has a unique minimum for every fixed (σ,m) on the convex and compact

set D. Furthermore, the gradient of f is linear in (â, d, c), so the solution can easily

be computed analytically by calculating the inverse of a 3 × 3 equation system. This

makes it possible to do an extremely fast optimization of the inner parameters given

the outer parameters. A smart optimization algorithm should take advantage of this

and involve an ”outer optimization” that optimizes (σ,m) and an ”inner optimization”,

that in every step of the outer optimization optimizes (â, d, c) over D. Let (â∗, d∗, c∗) be

the solution of Equation (4.7) and let (a∗, b∗, ρ∗) be the corresponding raw parameters.
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Then the whole optimization can be stated as

min
(σ,m)∈E

n∑
i=1

(
w(a∗,b∗,σ,ρ∗,m) − wi

)2
, (4.8)

where E is the domain of (σ,m). The situation for the outer optimization is not as bright

as for the inner. First of all, fxi,wi depends non-linearly on (σ,m). Secondly, fxi,wi usu-

ally has multiple minima which makes gradient methods unreliable. An optimizer that

can work around these concerns is the Nelder-Mead method with probabilistic restarts.

It is treated in detail in Appendix A.

When we have arrived to a optimal set of raw parameters, we can check if this set

gives an implied volatility smile that is free of static arbitrage by checking if it satisfies

Durlemann’s condition an condition (B) from Theorem 5. In [28], it is shown that (B)

is equivalent to call prices tending to zero in the large strike limit, which is always the

case in observed data. Therefore, it is sufficient to check Durrleman’s condition. If the

implied volatility smile satisfies it, the calibration is complete. If it does not a recalibra-

tion is needed. This is the second step of the optimization. By translating the calibrated

parameters from raw to JW, we get a JW parameter set (vτ , ψτ , pτ , cτ , v̂τ ) that admits

static arbitrage. We can then use Equation 3.10 and Equation 3.11 to repick cτ and v̂τ

and retrieve a new JW parameter set (vτ , ψτ , pτ , c
′
τ , v̂
′
τ ) which defines an implied volatil-

ity smile that is guaranteed to be free of static arbitrage. Now observe that Durrleman’s

condition is a continuous function of the parameters cτ and v̂τ . This guarantees us to

find a solution to the optimization

min
(c̄τ ,v̄τ )∈[cτ ,c′τ ]×[v̂τ ,v̂′τ ]

(
wSVI

imp(x; cτ , v̂τ )− wSVI
imp(x; c̄τ , v̄τ )

)2
, (4.9)

such that Durrleman’s condition is satisfied.

The optimization (4.9) yields, in a sense, the SVI closest to the originally calibrated SVI

that is free of static arbitrage. Since we may encounter multiple minima and non linear-

lity here aswell, the Nelder-Mead method can be implemented to solve this optimization.
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The following flow chart summarizes the optimization.

1. Solve the optimization in Equation (4.8). Let the Nelder-Mead method work over

E and for every pair (σ,m)

i). Find the global minimum f∗ of Equation (4.7). This minimum is guaranteed

to exist and is attained at (a∗, b∗, ρ∗).

ii). Check if (a∗, b∗, ρ∗) is in D.

Yes? Move to step 1.iv).

No? Move to step 1.iii).

iii) Find the minimum f∗ of Equation (4.8) on the boundary ∂D. This is guar-

anteed to exist and is attained at (a∗, b∗, ρ∗).

iv) Store the solution parameter set (a∗, b∗, ρ∗) and the function minimum f∗.

2. Extract the parameter set corresponding to the smallest f∗. This is the solution

(a∗, b∗, σ∗, ρ∗,m∗) to the optimization Equation (4.8).

3. Check if the SVI generated from (a∗, b∗, σ∗, ρ∗,m∗) satisfies Durrleman’s condition.

Yes? Optimization completed.

No? Continue to step 4.

4. Generate the JW parameter set (v∗τ , ψ
∗
τ , p
∗
τ , c
∗
τ , v̂
∗
τ ) corresponding to (a∗, b∗, σ∗, ρ∗,m∗)

through Equation (3.9).

5. Generate an SVI free of static arbitrage from (v∗τ , ψ
∗
τ , p
∗
τ , c
∗
τ , v̂
∗
τ ) by repicking c∗τ as c′τ

according to Equation (3.10) and repicking v̂∗τ as v̂′τ according to Equation (3.11).

6. Solve the optimization in Equation (4.9) with the Nelder-Mead method and arrive

to a JW parameter set (v∗τ , ψ
∗
τ , p
∗
τ , c̄τ , v̄τ ).

7. The optimization is complete.
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Numerical experiments

5.1 The Vogt smile: the elimination of static arbitrage

The Vogt smile constitutes an example of an SVI parameter set that does not satisfy

Durrleman’s condition. The set is in the raw parameterization

(a, b, σ, ρ,m) = (−0.041, 0.1331, 0.4153, 0.306, 0.3586). (5.1)

The constraint in Equation (4.1) implies that the parameter set in Equation (5.1) could

never be an output from the calibration algorithm described in Chapter 4. It is however

possible to generate an implied volatility smile and its corresponding Durrleman’s con-

dition, and these are presented in Figure 5.1. The right plot illustrates the violation of

Durrleman’s condition; the graph is not everywhere non-negative.
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Figure 5.1: Left plot: The implied volatility corresponding to the parameters in
Equation (5.1) is plotted against moneyness. Right plot: Durrleman’s condition corre-

sponding to the parameters in Equation (5.1) is plotted against moneyness.
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The time to maturity is needed to generate the JW parameters corresponding to the raw

parameters in Equation (5.1), but its value is not of importance and can be arbitrarily

chosen. For simplicity, and to follow Gatheral in [2] as close as possible, the time to

maturity is set to τ = 1. The JW parameters corresponding to the parameters in

Equation (5.1) are then

(vτ , ψτ , pτ , cτ , v̂τ ) = (0.0131,−0.1366, 0.7472, 1.5826, 0.0106). (5.2)

If vτ , ψτ , pτ are fixed and cτ , v̂τ are repicked according to Equation (3.10) and Equa-

tion (3.11), the new set of JW parameters gives a volatility smile that is guaranteed to

be free of butterfly arbitrage. The new parameter values are

c′τ = pτ + 2ψτ = 0.4740,

v̂′τ = vτ
4pτ c

′
τ

(pτ + c′τ )2 = 0.0124,

and the set of JW parameters that guarantees absence of butterfly arbitrage is thus

(vτ , ψτ , pτ , c
′
τ , v̂
′
τ ) = (0.0131,−0.1366, 0.7472, 0.4740, 0.0124). (5.3)

The implied volatility and Durrleman’s condition corresponding to this set of parameters

is presented in Figure 5.2 together with the arbitrageable volatility from Figure 5.1.
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Figure 5.2: Solid lines correspond to the parameter set in Equation (5.3) and dashed
lines correspond to the parameter set in Equation (5.1). Left plot: Implied volatility
corresponding to the parameter sets is plotted against moneyness. Right plot: Durrle-

man’s condition corresponding to the parameter sets is plotted against moneyness.

In the left plot of Figure 5.2, the effect of repicking cτ is observable. Since the value of

cτ was lowered to about a thrid of its original value, the slope of the right wing of the

smile is flatter. The right plot confirms that the SVI corresponding to the parameters



Chapter 5. Numerical results 55

in Equation (5.3) do satisfy Durrleman’s condition, since the green solid line is positive

everywhere.

Recall the discussion in Chapter 4 leading to the optimization in Equation (4.9). The

JW parameterization is continuous in all its parameters. Therefore, there exists a JW

parameterization (vτ , ψτ , pτ , c
∗
τ , v̂
∗
τ ) between the one in Equation (5.2) and the one in

Equation (5.3) that satisfies Durrleman’s condition and is as close as possible, in some

sense, to (vτ , ψτ , pτ , c
′
τ , v̂
′
τ ). This parameterization is found by optimizing (cτ , v̂τ ) over

the set [0.4740, 1.5826]× [0.0106, 0.0124] according to Equation (4.9). The Nelder-Mead

method was used as optimization algorithm. The optimal result was found to be

c∗τ = 1.3743,

v̂∗τ = 0.0110,

and is illustrated in Figure 5.3.
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Figure 5.3: The solid lines correspond to the, according to Equation (4.9), optimal set
of JW parameters, the dashed red lines that lie on top of the solid lines correspond to the
original parameter set in Equation (5.1) and the deviant green dashed lines correspond
to the parameter set in Equation (5.3). Left plot: Implied volatility corresponding to
the parameter sets is plotted against moneyness. Right plot: Durrleman’s condition

corresponding to the parameter sets is plotted against moneyness.
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5.2 Calibration to market data: the weighting of options

In this section, the SVI model will be fitted to raw market data. Before the calibration

method is applicable, the market data has to be prepared. This preperation is treated

in Section 5.2.1. One set of data on European put and call options written on the S&P

500 index, commonly refered to as SPX options. The S&P 500 index was discussed in

Chapter 2.1.

5.2.1 Data preperation

The market data used consists of a set of strikes and for each strike, bid and ask prices

for European call and put options written on that strike together with their corre-

sponding traded volume. Also, the price of the underlying and the time to maturity is

given. All prices are quoted in USD. Without loss of generality, let the current time be 0.

To apply the calibration, the forward price of the underlying and the interest rate of the

market need to be known. The forward price of the underlying can be derived from the

Put-Call parity,

C(τ,K)− P (τ,K) = S0 − e−rτK. (5.4)

The forward price of the underlying, F[0,τ ] = S0e
rτ , is hence equal to the strike at which

the call put and the put price are equal. This may happen in between data points. In

that case the strike where the prices agree is found by a linear interpolation between

the nearest data points. Note that since we now know the price of the underlying and

the forward price of the underlying for some expiry time we also know the interest rate

from today, t = 0, until that time.

All variables that are needed in the calibration are now at hand. It is time to look

at the quality of the information each data point carries. The quality, and therefore

importance, of the information of a data point will be judged by the trading volume of

that option. If there are options on the market without volume, illiquid options, then

these are removed from the data set. The illiquid options provide us with prices at

which nobody is trading and therefore they carry no information about the real price of

the option. In the next step, call options that have a strike price lower than the market

price of the underlying and put options with a strike price that is higher than the mar-

ket price of the underlying are discarded. Those that are kept, the out-of-the-money

options, tend to be more precise in pricing since they are bearing higher risk than the

ones we discarded, the in-the-money options. The out-of-the-money put option prices

are then translated into in-the-money call option prices via Equation (5.4) to create a



Chapter 5. Numerical results 57

discrete version of a call function. At each strike the latest ask and bid price for each

option is avaliable. The mid price for the option is the mean of the ask price and the

bid price. By inverting the Black-Scholes formula, implied volatilities corresponding to

the mid, ask and bid call prices can be obtained. An example of a prepared data set is

shown in Figure 5.4.
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Figure 5.4: Market data from liquid, out-of-the-money options written on the SPX
with underlying price $1857.6. Upper plot: Prices for call options plotted against strike

prices. The ask, mid and bid prices are not distinguishable on this scale.
Lower plot: Implied volatilities for the same option that was treated in the upper
plot plotted against moneyness. Here we can distinguish between the bid implied
volatility, which are plotted as red dots, mid implied volatility, black dots, and ask

implied volatility, blue dots.

5.2.2 SPX options

This section will take the reader through a trail of thought of the author during a test of

the calibration method on real market data. As the reader will notice, the first results

are not very attractive. These results serve as motivation to further elaborate the cali-

bration, by introducing option weights and caps. The gist of this section is that there

are several ways to put weights on the data points, and that the best way to do it, using

the calibration method from Chapter 4, depends on the data set.
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The first choice that is faced is what implied volatility data to use in the calibration.

Ask, bid and mid implied volatility data is avaliable, but all values in the interval be-

tween the bid and the ask, called the bid-ask spread, are feasible. The SVI in this

calibration are calibrated to mid implied volatility. In Figure 5.5, the SVI fit together

with bid (smaller) and ask (larger) implied volatilites are presented. Only every third

ask and bid implied volatility is plotted, so that it is possible to distinguish between

data point in the graphs.
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Figure 5.5: Implied volatility plotted against moneyness for four different times to
maturity. The red dots are bid implied volatility, the blue line is the SVI fit to mid
implied volatility and the black dots are ask implied volatility. Only every third ask

and bid implied volatility is plotted.
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The SVI implied volatility smile looks stiff, and fails to fit the implied volatility well

around at-the-money for three of the four times to maturity. This calibration error is

quantified in Figure 5.6 in terms of fractions of the total trading volume. The option

volume traded differs across the strikes. The total trading volume at a specific time to

maturity is the options volume that has been traded across all strikes. The volume at

all the strikes where the SVI call prices lie within the bid-ask call market price spread

are summed. This sum divided by the total trading volume is chosen as a measure of

how well the SVI fits the market data. The fractions corresponding to the SVI implied

volatility in Figure 5.5 are plotted in Figure 5.6, and for the three times to maturity

where the SVI implied volatility did not manage to fit the at-the-money options, the

fractions are small.
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Figure 5.6: The fraction of the total trading volume that the SVI implied volatility
manages to fit within the bid-ask call market price spread is plotted against time to

maturity for the implied volatility smile that has been fitted.

The connection between the low values in Figure 5.6 and the bad fit around at-the-

money is explained by the fact that most of the traded volume lies in the moneyness

interval [−0.1, 0.05]. In Figure 5.7, the relative trading volume, that is the fraction of

the total trading volume that is traded at a specific strike, is plotted against moneyness

using data from the shortest time to maturity. Also, the accumulated relative trading
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volume, that is all the volume traded at all strikes smaller or equal to a specific strike,

is plotted against moneyness. The concentration of volume is clearly visible in the steep

ascent of the thick red line, about 80% of the trading volume was lying in the moneyness

interval [−0.1, 0.05].
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Figure 5.7: The concentration of trading volume around the origin.
Left axis: The relative trading volume, blue dots, is plotted against moneyness.

Right axis: The accumulated relative trading volume, red line, is plotted against mon-
eyness.

The importance of the high volume options is not considered in the calibration method

of Chapter 4 where all options were treated equally. Introducing weights on the options

in the objective functions of the optimization reflecting their importance comes to mind

as a natural solution to this. Therefore Equation (4.8) is replaced with the optimization

min
(σ,m)∈E

n∑
i=1

Wi

(
w(a∗,b∗,σ,ρ∗,m) − wi

)2
, (5.5)

where W1, . . . ,Wn are the weights. What weights to use is a choice of the implementor.

The relative trading volume of the options, or some increasing function of it, is a strong

candidate. The relative trading volume reflects each individual option’s fraction of the

total market volume. Another candidate is the vega of the option, or some increasing
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function of it. The vega is a measurement of the sensitivity of the value of an option to

changes in the implied volatility of the underlying. It is defined as the derivative of the

option price with respect to implied volatility. In Figure 5.8, vega is plotted together

with the relative trading volume against moneyness for the option data at the second

shortest time to maturity.
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Figure 5.8: Two possible choices of option weights. Left axis: The relative trading
volume is plotted against moneyness. Most of the volume is traded between −0.1 and
0.05, but some outliers can be seen on the negative part of the x-axis. Right axis: The
vega of the option is plotted against moneyness. The sensitivity of the option price to
changes in volatility is greatest around the origin and decays quickly in both directions.
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The shape of the vega in Figure 5.8 is characteristic for the vega of a call option, hence

prices of call options are not sensitive to large changes in volatility at strikes far from

at-the-money. This implies that if the same volume is traded at some strike far from at-

the-money and at some strike at-the-money, it is more important to fit the at-the-money

option well. In this calibration the weights were chosen to be the product between the

relative trading volume and the vega,

Wi = Relative trading volume at strike number i×Vega at strike number i. (5.6)

One more question needs to be settled. Since the SVI only has five parameters, it will

never be able to fit the mid implied volatility for all options. If fewer options are used

in the fit, the SVI will be able to fit these options better. Assume that the N heaviest

options are used in the calibration. How does the SVI overall performance depend on

N? Does the SVI nessecarily do better just because we calibrate it to more data points?

In Figure 5.9, the fraction of the total trading volume that the SVI fitted inside the call

spread is plotted against N , the number of options in heavy to light order, used in the

calibration.
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Figure 5.9: The fraction of the market which was fitted inside the call spread as a
function of the number of options used in the calibration.
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For three of the maturities, the general pattern is that the overall performance becomes

better and better the more options we use. The top right corner plot breaks this pattern,

and the shape of that plot is sometimes seen in market data. In the light of the plots in

Figure 5.9 we chose to calibrate the SVI after the Nmax heaviest options, where Nmax is

the number where the graphs in Figure 5.9 reach their maximum. To summarize,

• all options are weighted according to Equation (5.6),

• the options are ordered according to their weights,

• the Nmax heaviest options are used in the calibration, where Nmax is the number

at which the experiment illustrated in Figure 5.9 attains its maximum.

The result of this new calibration is presented in Figure 5.10. Compared to the fits in

Figure 5.5, the new calibration looks better. By looking at the fraction of total trading

volume that the new calibration fit inside the bid-ask call price spread, this is confirmed.

The fractions are presented in Figure 5.11. The fit is still not perfect for short times to

maturity, but this is expected. Short lived options are generally much more difficult to fit.

Figure 5.11 shows that still not all the volume is hit by the SVI. It is interesting to

know which options that were fitted outside the bid-ask spread and how far away from

the spread these misfitted prices are. Where are the thieves lurking that the SVI misses,

and how dangerous are they? This question is answered by Figure 5.12. Only for the

shortest time to maturity does the SVI miss the bid-ask spread close to the at-the-money.

Otherwise, the misses are far out-of-the-money.

Finally, no butterfly arbitrage was detected for the SVI implied volatilitiy in Figure 5.10.

This was an expected result, since the SPX is one of the most liquid options on the mar-

ket. In Figure 5.13, Durrleman’s condition corresponding to the SVI fits is plotted. Is

is everywhere positive, which implies absence of butterfly arbitrage.

We have now seen the calibration method in action. It is able to eliminate static arbi-

trage from an implied volatility smile given by a set of SVI parameters and it manages

to produce good fits to real market data. Thus this research has generated a calibration

model that fulfills the purpose of this thesis within the stated delimitations. We let the

following plots conclude this chapter and the thesis.
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Figure 5.10: New SVI implied volatility fit using weights and caps in the calibration.
The red dots are bid implied volatility, the blue line is the SVI fit to mid implied
volatility and the black dots are ask implied volatility. Only every third ask and bid

implied volatility is plotted.
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Figure 5.11: The fraction of the total trading volume that the new SVI implied
volatility, calibrated with weights and caps, manages to fit within the bid-ask call price
spread is plotted against time to maturity for the implied volatility smile that has been

fitted.
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Figure 5.12: The amount that the SVI generated call prices miss the bid-ask call
price spread at each strike plotted for the four times to maturity.
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Mathematical Finance, 13(3):345–382, July 2003.

[7] Kellerer, H.G. Markov-Komposition und eine Anwendung auf Martingale. Mathe-

matische Annalen, 198(3):99–122, 1972.

[8] Durrett, R. Probability, Theory and Examples. Cambridge University Press, 2010.

[9] Hirsch, F., Roynette, B. A new proof of Kellerer’s theorem. ESAIM: Probability

and Statistics, 16:48–60, 2012.

[10] Hirsch, F., Roynette, B., Yor, M. Kellerer’s theorem revisited. Unpublished, 2012.
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Appendix A

Nelder-Mead method

The Nelder-Mead method is a simplex method for finding a local minimum of a function

of several variables. It employs a pattern search, which will be described below, that

compares function values at the vertices of the simplex. The objective function is evalu-

ated at all vertices. The worst vertex, that is the vertex that gives the highes objective

function value, is rejected and replaced by a new vertex. A new simplex is formed and a

new comparison is made. After itterating this algorithm, the simplices will zoom in on

a local minium and will have decreased in size so that eventually, they approximate the

local minimum. By rerunning the algorithm from various initial points, all local minima

can be found and hence also the global minimum.

Probabilistic restarts

Local optimizers can make up a global search when repeatedly started from different

initial points. In the SVI calibration, the Nelder Mead method is applied to a non-linear

function that can have multiple minima. Therefore, a global search is necessary. In [29],

the authors introduce a method to choose the initial points. Their procedure involve a

random sampling of a set of points, and then a selection of the initial point from this set

by measuring the distance, in some sense, to the previous initial points. This procedure

saves us from the task of defining a grid of initial points, which would have been the

case in a deterministic search. Thus we do not have to know how many times we have

to restart the algorithm in advance. The procedure also uses information about past

searches, which a pure random choice of initial points would not. Thus the precedure

has a low chance of choosing a initail point close to some old initial point, and therefore

finding the same local minimum twice.

69
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If we have already sampled a set {xi}Ni=1 of initial points for the algorithms, let the

probability of sampling a point x ∈ Rn to be the initial point be

p(x) =
1

N

N∑
i=1

pi(x), (A.1)

where

pi(x) =
1

(2π)n/2det(Σ)1/2
e−

1
2

(x−xi)TΣ−1(x−xi). (A.2)

Here, n is the dimension of Rn, the space we run the optimize in, and Σ is the covariance

matrix. It is suggested in [29] to estimate the covariances, σ2
j , by

σ2
j = α(xmax

j − xmin
j )2, j = 1, . . . , n,

where α is a positive parameter that controls the width of the Gaussian bell in Equa-

tion (A.2) and xmax
j and xmin

j are the upper and lower bounds for the feasible region in

the j:th direction. A value for α that works will with the SVI implementation is 0.1.

By casting points randomly from a uniform distribution on the feasible set, we get

candidates to the initial point for the algorithm. We can then order these candidates by

evaluating (A.1) at all the casted points. The point which generates the smallest value

of Equation (A.1), the point which has the least probability of being casted given earlier

initail points, is selected as initial point.

The algorithm, step by step

Let s0 be the initial simplex with vertices x1, . . . , xn. Let f be the objective function we

want to minimize.

i) Reorder the vertices with respect to their objective function values, that is if

f(x1) ≤ · · · ≤ f(xn)

then x1 is the best point and xn is the worst point.

ii) Calculate the center of mass of s0\xn, the initial simplex without the worst point,

xc =
1

n− 1

n−1∑
i=1

xi
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iii) Calculate the reflection, xr of the worst point, xn with respect to xm,

xr = xm + ρ(xm − xn).

The choice of ρ does not necessarly have to be 1, but has to be positive. If xr is

better that the second worst point xn, but not better than the best point x1, that

is

f(x1) ≤ f(xr) ≤ f(xn − 1),

then let the new simplex s1 be s0 but with the worst point xn replaced by xr. In

this case, restart the algorithm from step i). Otherwise, move on to step iv).

iv) If xr is better than the best point x1, that is f(xr) < f(x1), then calculate the

expansion xe of xn with respect to xm,

xe = xm + η(xm − xn), η > ρ.

If xe is better than xr, that is f(xe) < f(xr), then let the new simplex be s0 but

with the worst point xn replaced by xe and restart the algorithm from step i). If

that is not the case, then the new simplex is s0 with the worst point xn replaced

by xr.

v) Now f(xr) ≥ f(xn−1), so calculate the contraction xc of xn through xm,

xc = xm − c(xm − xn), 0 < c < ρ.

If xc is better than the worst point, that is f(xc) < f(xn), then let the new simplex

be s0 but with the worst point xn replaced by xc and restart the algorithm from

step i). If that is not the case, go to step vi).

vi) Replace all vertices except the best one, {xi}ni=2, with their contractions towards

the best one, {x′i}ni=2,

x′i = x1 + σ(xi − x1).

Now let the new simplex be the convex hull of {x1} ∪ {x′i}ni=2 and return to step

i).

Figure A.1 illustrates one iteration of the algorithm.
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Figure A.1: One iteration of the Nelder-Mead algorithm with ρ = 1, η = 2, c = 1/2
and σ = 1/3.



Appendix B

Spanning a payoff with bonds and

options

The following spanning formula was derived in [30] by Carr and Madan.

Using Dirac’s delta function, we can for any function f(s) write for some k ≥ 0.

f(s) =

∫ ∞
0

f(K)δ(s−K)dK

=

∫ k

0
f(K)δ(s−K)dK +

∫ ∞
k

f(K)δ(s−K)dK,

Recall that

∫ b

a
δ(s−K)d = H(s < K)|ba, where H is the Heaviside function. Integrating

the previous equation by parts gives

f(s) = f(K)H(s < K)|k0 −
∫ k

0
f ′(K)H(s < K)dK

+ f(K)H(s ≥ K)|∞k +

∫ ∞
k

f ′(K)H(s ≥ K)dK.

Integrating the integrals by parts one more time yields,

f(s) = f(K)H(s < K)|k0 + f ′(K)(K − s)+
∣∣k
0

+

∫ k

0
f ′′(K)(K − s)+dK

+ f(K)H(s ≥ K)|∞k + f ′(K)(s−K)+
∣∣∞
k

+

∫ ∞
k

f ′′(K)(s−K)+dK.

Making the economic interpretation of f(s) as a payoff on a contract written on an

underlying s, and K as the strike, we can impose the boundary condition f(0) = 0. Any
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other payoff at 0 would create arbitrage. Then the last equation becomes

f(s) = f(k) + f ′(k)
(
(s− k)+ − (k − s)+

)
+

∫ k

0
f ′′(K)(K − s)+dK +

∫ ∞
k

f ′′(K)(s−K)+dK.



Appendix C

Call price derivative

Using the notation from Chapter 2.4, this appendix presents the calculations behind all

used derivatives of the Black-Scholes call price function.

Since we assume that implied volatility is non-constant over strikes, we have to be careful

when calculating the derivative of the call price with respect to strike. All dependencies

and subscripts will be dropped in the calculations that follow to avoid messyness, so lets

de a review of the dependencies of all involved functions,

CB : (τ,K, τσ2
imp;F, r, t) 7→ F[t,t+τ ]N (d1)−KN (d2),

d1 : (τ,K, τσ2
imp;F, r, t) 7→ − x

θimp
+
θimp

2
,

d2 : (τ,K, τσ2
imp;F, r, t) 7→ − x

θimp
+
θimp

2
,

x : (F,K; t, τ) 7→ log(K/F[t,t+τ ]),

F : (t, τ ;S, r) 7→ Ste
rτ ,

σimp : (τ,K) 7→ σimp(τ,K),

θimp : (τ,K) 7→
√
τσimp(τ,K),

wimp : (τ,K) 7→ θ2
imp(τ,K),

N : d 7→ 1√
2π

∫ d

−∞
e−t

2/2dt,

n : d 7→ 1√
2π
e−d

2/2.

All first and second order partial derivatives of CB with respect to moneyness and

implied volatility will be needed in the differentiation, so first these will be calculated
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explicitly. A useful trick in the differentiation is the following,

n (d1) =
1√
2π
e−

(x/θimp)2−x+(θimp/2)
2

2

=
ex√
2π
e−

(x/θimp)2+x+(θimp/2)
2

2

= exn (d2) .

Lets calculate the partial derivatives.

∂xC
B = F

(
n(d1)∂xd1 − exN (d2)− exn(d2)∂xd2

)
= F

(
n(d1)

(
− 1

θimp

)
− exN (d2)− exn(d2)

(
− 1

θimp

))
= −FexN (d2).

∂σimpC
B = F

(
n(d1)∂θimp

(d1)∂σimp(θimp)− exn(d2)∂θimp
(d2)∂σimp(θimp)

)
= Fn(d1)

√
τ

(
x

θ2
imp

+
1

2
− x

θ2
imp

+
1

2

)
= Fn(d1)

√
τ .

∂xxC
B = −FexN (d2)− Fexn(d2)∂xx(d2)

= F

(
−exN (d2) + n(d1)

(
1

θimp

))
.

∂xσimpC
B = −Fexn(d2)∂σimp(d2)

= Fn(d1)
√
τ

(
− x

θ2
imp

+
1

2

)
.

∂σimpσimpC
B = F

√
τ∂d1

(
n(d1)

)
∂σimp(d1)

= F
√
τn(d1)(−d1)

√
τ

(
x

θ2
imp

+
1

2

)

= Fn(d1)τ

(
x

θimp
− θimp

2

)(
x

θ2
imp

+
1

2

)

= Fn(d1)τ

(
x2

θ3
imp

− θimp

4

)
.
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Using the partial derivatives from above together with the chain rule for differentiation

of multivariable functions, we can calculate the derivatives that we are interested in.

∂KKC
B = ∂K

(
∂x
(
CB
)
∂K(x) + ∂σimp

(
CB
)
∂K (σimp)

)
(C.1)

= ∂xx
(
CB
) (
∂K(x)

)2
+ ∂xσimp

(
CB
)
∂K(x)∂K (σimp) + ∂x

(
CB
)
∂KK(x)

+ ∂σimp∂x

(
CB
)
∂K (σimp) ∂K (x) + ∂σimpσimp

(
CB
) (
∂K (σimp)

)2
+ ∂σimp

(
CB
)
∂KK (σimp)

=
1

K2
∂xx

(
CB
)

+
1

K2
∂xσimp

(
CB
)
∂x (σimp)− 1

K2
∂x
(
CB
)

+
1

K2
∂σimpx

(
CB
)
∂x (σimp) +

1

K2
∂σimpσimp

(
CB
) (
∂x (σimp)

)2
+

1

K2
∂σimp

(
CB
) (
− ∂x (σimp) + ∂xx (σimp)

)
=

1

K2

(
∂xx

(
CB
)

+ 2∂x (σimp) ∂xσimp

(
CB
)

+
(
∂x (σimp)

)2
∂σimpσimp

(
CB
)

− ∂x
(
CB
)

+
(
− ∂x (σimp) + ∂xx (σimp)

)
∂σimp

(
CB
))

=
Fn(d1)

K2

(
1

θimp
+
√
τ

(
1− 2x

θ2
imp

)
∂x (σimp)

+ τ

(
x

θ3
imp

− θimp

4

)(
∂x (σimp)

)2
+
√
τ
(
− ∂x (σimp) + ∂xx (σimp)

))

=
Fn(d1)

K2θimp

((
1−
√
τ
x

θimp
∂x (σimp)

)2

− τ
θ2

imp

4

(
∂x (σimp)

)2
+
√
τθimp∂xx (σimp)

)
.

It is useful to translate this expression into derivatives with respect to total implied

variance.

∂KK
(
CB
)

=
Fn(d1)

K2θimp

((
1−
√
τ
x

θimp
∂x (σimp)

)2

− τ
θ2

imp

4

(
∂x (σimp)

)2
(C.2)

+
√
τθimp∂xx (σimp)

)
=

Fn(d1)

K2θimp

((
1− x

θimp
∂x (θimp)

)2

−
θ2

imp

4

(
∂x (θimp)

)2
+ θimp∂xx (θimp)

)

=
Fn(d1)

K2√wimp

((
1− x
√
wimp

1

2
√
wimp

∂x (wimp)

)2

− wimp

4

1

4wimp
(∂x (wimp))2

+
√
wimp

(
1

2
√
wimp

∂xx (wimp)− 1

4w
3/2
imp

(
∂x (wimp)

)2))

=
Fn(d1)

K2√wimp

((
1− x

2wimp
∂x (wimp)

)2

− 1

4

(
1

wimp
+

1

4

)(
∂x (wimp)

)2
+

1

2
∂xx (wimp)

)
.
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Furthermore, in the proof of Theorem 5, the derivative of

f(wimp) =
F

K
N (d1)−N (d2)

with respect to total implied variance is needed.

∂wimpf(wimp) =
F

K
n(d1)∂wimp(d1)− n(d2)∂wimp(d2) (C.3)

=
F

K
exn(d2)∂wimp

(
− x
√
wimp

+

√
wimp

2

)
− n(d2)∂wimp

(
− x
√
wimp

−
√
wimp

2

)
= n(d2)

1

2
√
wimp
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