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Pedestrian crowds in confined domains
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Example: Unidirectional pedestrian flow

Experimental results show that the average pedestrian speed can be higher in
the center of the domain (Daamen et al, 2007) or be higher near the boundary
(Zanlungo et al, 2012). Dependent on circumstances (congestion, etc).
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Lateral position in front of bottleneck (m) Figure 2. Velocity distributions as measured in the environ-

ment £, (v in red, v~ in blue). Error bars are obtained as

Fig. 5. Speeds as function of the lateral position in a cross-section upstream of the s?rd:rdhdevlations of values of v averaged over time windows
! o of length 1200 s.

bottleneck during congestion. 0i:10.1371/iournal.pone.0050720.0002
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Pedestrian crowds in confined domains

Treatment of walls in pedestrian crowd models

Modeling approach Wall modeling

Social force Repulsive forces, disutility

Cellular automata (CA) Forbidden cells

Continuum limit of CA Neumann/no-flux boundary conditions

Hughes flow model Neumann/no-flux boundary conditions, oblique reflection
Mean-field games/control/type games Neumann/no-flux boundary conditions, disutility

Neumann/no-flux boundary conditions on the
pedestrian density correspond to reflection.
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In this talk we will introduce
sticky reflected SDEs of mean-field type with boundary diffusion

as an alternative way to model walls in the
mean-field approach to crowd dynamics.

The mean-field approach to crowd dynamics:

> Interacting system of controlled SDEs.

» Optimal control or differential game setup.

> In the limit (crowd size)— oo, interaction effects can be written in terms
of a mean field (if the interaction is weak, etc.).

Yields: control of McKean-Vlasov equations (Andersson & Djehiche, 2011,
Buchdahn et al, 2016; ...), mean-field games (Lasry&Lions, 2007; Huang et
al, 2007; ...), and mean-field type games (Tembine, 2017).
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Sticky reflected SDEs of mean-field type with boundary diffusion

Consider the SDE system

dX; = %df?(x) +1x>01dB:,  Xo = xo,
1(x,—0ydt = 7d€3(X),
where
> xp € Ry,
» v € (0,00) is a given constant,
> £o(X) is the local time of X at 0,

» B is a standard Brownian motion.

System (1) has no strong solution but a unique weak solution, called a
reflected Brownian motion X in R sticky at 0.
See e.g. Engelberg and Peskir (2014).
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Sticky reflected SDEs of mean-field type with boundary diffusion

Grothaus and Vosshall (2017) extended the result to a
bounded domain D C R? with sticky C?-smooth boundary 8D.

Let
» Q:= C([0, T];RY) be path space,
» F the Borel o-field over Q,

> Xi(w) = w(t) the coordinate process,
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Sticky reflected SDEs of mean-field type with boundary diffusion

To write down the sticky reflected SDE with boundary diffusion system, let

» n(x) be the outward normal of 9D at x,

» 7(x) := E — n(x)(n(x))*, the orthogonal projection on the tangent space
of 9D at x,

> k(x) = (7m(x)V) - n(x), the mean curvature of D at x.

These quantities are uniformly bounded over 9D.
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Sticky reflected SDEs of mean-field type with boundary diffusion

To write down the sticky reflected SDE with boundary diffusion system, let

» n(x) be the outward normal of 9D at x,

» 7(x) := E — n(x)(n(x))*, the orthogonal projection on the tangent space
of 9D at x,

> k(x) = (7m(x)V) - n(x), the mean curvature of D at x.
These quantities are uniformly bounded over 0D.

There exists a unique probability measure P on (€2, F) under which
1
dX; = 1p(X¢)dB: + 1ap(X:) (dB?D - Zn(XJdt) ,
1
dB?P = 7(X;) 0 dB; = —5R(Xe)n(Xo)dt + m(X.)dB,
B standard Brownian motion in RY, Xo = xp € D, v > 0,

and X is C([0, T]; D)-valued P-a.s. (in particular, X is P-a.s. uniformly
bounded).
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Sticky reflected SDEs of mean-field type with boundary diffusion

dX: = (1p(X:) + Lon(X)7(X,)) dBr — 1@D(Xt)% (H(Xf) + 3) n(X:)dt

The sticky reflected SDE with boundary diffusion is composed of $pace.lcm
» interior diffusion 1p(X;)dB:,
» boundary diffusion laD(Xt)dBtaD

» normal sticky reflection —1ap(Xt)§n(Xt)dt

From now on, we abbreviate

Cl)(tL = U(Xt)dBt + a(Xt)dt

The coefficients o and a are bounded,

O'(Xt) = ]-D(Xt) + ].8D()<1§)7'l'()<t)7 a(Xt) = —la’D(Xt) <I€(Xt) + %) n(Xt).

N =
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The stickiness level ~

~ represents the level of stickiness of 9D.

Let

> ) be the Lebesgue measure on R,
» s be the surface measure on 0D,

> p:=1lpaX+lopa’s, o, €R.
Choosing
a=a/\D), o =(1-a)/s(dD), aco,1],
p becomes a probability measure on R? with full support on D.
The measure p is in fact the invariant distribution of X; whenever

1 a s(0D)

v 1= D)

a — 1 as v — 0, and the invariant distribution p concentrates on D
@ — 0 as v — o0, and the invariant distribution p concentrates on 9D
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Sticky reflected SDEs of mean-field type with boundary diffusion

Interaction and control is introduced via Girsanov transformation.

Let F be the filtration generated by X completed with the P-null sets of 2, and
> |x|¢ := suppcscs X6, 0SS T,
» UCR?and U :={u:[0,T] x Q = U | u F-prog.meas.},

» Q(t) := Qo X, ! denote the t-marginal distribution of X under Q € P(Q),
> B:[0,T] x Q x P(RY) x U — R such that

(A) (B(t, X, Q(t), ut)),< 7 is F-prog.meas. for every Q € P(Q2) and u € U.
(B) Forevery t € [0, T], w € Q, u € U, and u € P(R?),

e < € (1o i+ [ yluan)

(C) Forevery t €[0, T], w € Q, u€ U, and p, i’ € P(RY),

|ﬂ(t7waua U) - ﬁ(t>w7ﬂlv U)| < c- dTV(Maul)
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Sticky reflected SDEs of mean-field type with boundary diffusion

Theorem 1

Given u € U, there exists a unique weak solution (P) to the sticky reflected
SDE of mean-field type with boundary diffusion

dXe = o(X:)dB¢ + (a(xt) +0o(Xe)B(t, Xe, PY(t), Ur)) dt.

Under P* the t-marginal distribution of X. is P“(t) for t € [0, T] and X. is
almost surely C([0, T]; D)-valued. Furthermore, P* € P,(Q).
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Weak optimal control of sticky reflected SDEs of mean-field type

Let
f:00,T] x Qx P(RY) x U — R,

g:R?x P(RY) — R.

Consider the following finite time-horizon problem:

mingey J(u) = E* [/OT f(t, X, P(t), us)dt + g(X7,P"(T))
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Weak optimal control of sticky reflected SDEs of mean-field type

Let
f:00,T] x Qx P(RY) x U — R,

g:R?x P(RY) — R.
Consider the following finite time-horizon problem:
T
mingey J(u) = E* {/ f(t, X, P(t), us)dt +g(XT,IP’”(T))]
0

=E VT LEF(t, X, PU(t), u)dt + L“Tg(xT,P“(T))} ()

st dly = L7 B(t, X, P(t), u(t))dB:, Ly =1,

X is the coordinate process,

Problem (2) is a weak form mean-field type control problem.
The probability space is controlled via the likelihood L“.
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Weak optimal control of sticky reflected SDEs of mean-field type

Additional assumptions on 3, f, and g:
(D) For ¢ € {3, f},

d)‘l:l = ¢(t7Xa Eu[r¢(Xt)]7 ut) = d)(taXa E[L;’nf)(Xt)]v ut)7
and g¥ = g(Xt, E[L%rg(X7)]), where rg, rr,ry : RY — RY.

(E) For every u € U, the process (f(t, X, E“[re(Xt)], ut))e is progressively
measurable with respect to F and (x,y) — g(x,y) is Borel measurable.

(F) The functions (t,x,y, u) — (f,B8)(t,x, y,u) and (x,y) — g(x,y) are twice
continuously differentiable with respect to y. Moreover, 3, f and g and all their
derivatives up to second order with respect to y are continuous in (y, u), and
bounded.
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Weak optimal control of sticky reflected SDEs of mean-field type

In view of (A)-(F) Pontryagin’s type stochastic maximum principle is available
(Buckdahn et al, 2011, Honsker 2012).

Theorem 2
Assume that (4, Lﬁ) is an optimal solution to the mean-field type control
problem (2). Then for all v € U and a.e. t € [0, T] it holds P-a.s. that

H(LE, v, pos ) = H(LE, 00, e ae) + S [(LB)(O]T PO(LAY(1)] < 0,

where ) bou vou
H(Lh Ut, Pt, qt) = Ltﬂt gt — Ltft )

S(LA)(E) i= LGB (e, X, ELLEra(X0)],v) — 50),
dpe = —(ae + E a9, 8] ra(Xe) — £ — E [LIV, 2] re(X0)) ot + edlBe,
pr=—g} — E[L3V,g}] ra(X7),
dPe = —( (87 + EILIV, 801r5(X0)) P+ 2 (BE + EILEV, B11rs(X0)) @0

+ ElaeVy 871ra(Xe) — EIV, £7]re(Xe) ) dt + QedBr,

Pr=0.
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Identifying optimal controls when U is convex.

Whenever U is convex, the optimality condition simplifies to

(v — )" VyH(LY, e, pe,qe) <0, Vv e U; Pas., ae-t €0, T

Assume that 4 is optimal. A matching argument yields
qr = =V (X, t) o(Xe),
where ¢(Xt, T) is the terminal condition for p,
9(Xe, ) = g (X, 'l (X)]) + E° [V (X E°re (X)) | ra(X0),
and the optimality condition (variation of H) relates i to g,

thu,Bf’ = V,,ftﬁ, P-as., a.e-t € [0, T].
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Example: Unidirectional pedestrian flow

Experimental results show that average pedestrian speed in a cross-section of a
corridor can be higher in the center than near the walls (Daamen et al, 2007),
but also higher near the walls (Zanlungo et al, 2012), depending on the
circumstances (congestion, etc).
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Figure 2. Velocity distributions as measured in the environ-

ment £ (v in re lue). Error bars are obtained as

Fig. 5. Speeds as function of the lateral position in a cross-section upstream of the st;ardar:;:ez\‘r’i;tions of values of y averaged over time windows
i gesti of lengt .

bottleneck during congestion. doi:10.1371/journal.pone.0050720.002

Lateral position in front of botlleneck (m)
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Example: Unidirectional pedestrian flow

Let D be a long narrow corridor with exit x7 and entrance xp in opposite ends.

1
min %E {/ LYF(t, X, E[LYre(Xe)], ue)dt 4+ L% | X7 — XT|2] ,
u. 0

st. dlf = L{udB;, Ly = 1.

f is a congestion-type running cost:
F(£, X, E[LLre(Xe)], ue) = C(Xe) {1+ h (£, X, E"[re (XD} ue”,

where

> |ul?, cr > 0, is the cost of moving in free space;
> h|ul® is the additional cost to move in congested areas;
> C(Xt) := &1r(Xe) + 1p(Xe), € > 0, monitors f on the boundary 9D.

Lower & yields lower overall cost of moving on 9D and vice versa.
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Example: Unidirectional pedestrian flow

Assuming U is convex, an optimal control satisfies

b — o (Xe) (X — x7)
"X (1 + h(t, X, Efre (X))

P-as., ae-t€]0, T].

i implements the following strategy:

> Move towards the exit x1, but scale the speed according to the local
congestion.
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Example: Unidirectional pedestrian flow

o = o(X)(Xe — x7) '
C(X) (T + h(t. X, E?[r (X))

We will compare two congestion costs

> friendly .
h=h = |Xa(t) — E"[Xa(2)]]
> averse

. 1
h=h = e~ B

In both cases,

> re((xas %)) = x

> Xy(t) is the y-component of X;: (perpendicular to the corridor walls).
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Example: Unidirectional pedestrian flow

Estimated cross-section mean speed profiles

Speed

(a) Congestion friendly (h = hy).

(b) Congestion averse (h = hy).

» Boundary movement speed is indeed monitored through &.
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Particle picture: The corresponding microscopic model

Consider N € N (non-transformed, independent) sticky reflected SDEs with
boundary diffusion

dX! = a(X)dt + o(X!)dB!,
{ (Xi)dt + o (X¢) 3)

Xé:x;, i=1,...,N.

Grothaus and Vosshall (2017):
There exists a unique probability measure PV on (,.%), where

Q := C([0, T];R™) and .7 is the corresponding filtration. Under P,
(X, ..., X") satisfies (3) and is C([0, T]; D")-valued P"-a.s.
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Particle picture: The corresponding microscopic model

Weak interaction and control can be introduced in the particle system
: . 1 N N Npgy . 1
Given u:= (u',...,u") €U", let p"(t) := § >, ; Ox; and

dif, = L8 8(e, X p (1), ul)dBl, Lie=1, i=1,...,N.
N

L= Lk
i=1

LYY defines a Girsanov transformation of PV to PV,

Under P¥* the coordinate process is C([0, T]; D)-valued a.s. and satisfies

dX{ = (o(X)B(t, X!, 1" (t), ul) + a(X{))dt + o(X{)dB;",
Xi=x§, i=1,...,N,

where B is a PV"-Brownian motion. Also, P"* € P,((C([0, T]; D)").
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Particle picture: The corresponding microscopic model

Social cost for the particle system:
1< T i i i
() = g > EM [ | X (). e+ g6 (7))
i=1 0

Minimization of Jy(u) is a cooperative scenario.

If the mean-field optimal control is closed-loop, the mean-field system can be
approximated by a particle system and the mean-field cost by a social cost.
The theorem on the next page relies on Theorem 3.2 of Lacker (2018).
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Particle picture: The corresponding microscopic model

Theorem 3

Let u € U be a closed-loop control, i.e. u;(w) = @(w.A¢) for some measurable

function ¢ : (Q, F) — (U, B(U)). Given the control u and a random variable &

with law \ (nonatomic with support only on D), the sticky reflected SDE of

mean-field type with boundary diffusion

dX: = (a(Xe) + o(Xe)B(t, X, PY(t), o(X At))) dt + o(X:)dB:,

{ . @)
0o=2¢,

can be approximated by the interacting particle system with all components

using the fixed closed-loop control u. Furthermore, the value of the mean-field

cost functional J at u is the asymptotic social cost of the interacting particle

system as N — oo when all the X"'s are using the fixed control u. More
specifically,

lim Dr (]P’N’” o (XM, XM (o Xf1)®k) —0, (5)
N— oo

with u = (u,...,u), and

lim %ZJ’(M...,U) = J(u). (6)

N— oo
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Conclusions

» Mean-field approach to crowd dynamics

>
>
>

congestion, crowd aversion, etc.
decision-based modeling with anticipating agents
correspondence between micro- and macroscopic picture

» Sticky reflected SDEs of mean-field type with boundary diffusion

>
>
>

as an alternative to reflective boundary conditions in confined domains
pedestrians no longer “bounce” at the boundary

pedestrians may interact and take actions while spending time at the
boundary

corresponds to a microscopic model

Thank you!
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Examples: Convex and compact U

Assume that (4, I:) is an optimal solution for the mean-field type control
problem. Recall the first order adjoint equation,

dpe = 7(th55 +E [qunyﬁf] rB(Xz)
_f_E [Lfvyfﬁ] rf(Xt))dt + q:dB:, (7)
pr=—gi —E [L?Vyg?] re(Xr).
Rewriting E[L‘;’ Y] = Eﬁ[Yt] and changing measure to P?,
dp. = — (E° [0, 8] rd(Xe) — £ — E° [V, 7] re() ) dit + .05/,

pr=—gf — E' [V,gf] re(Xr).
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Examples: Convex and compact U

Assume that (4, I:) is an optimal solution for the mean-field type control
problem. Recall the first order adjoint equation,

dpe = — (a0 + E [a:LiV, 87 ] r(X:)
— £ = E[LIV, ] re(X0)) dt + .05, (7)
pr=—gf —E [L?Vyg?] re(Xr).
Rewriting E[L?Y;] = E?[Y;] and changing measure to P?,
dp = —(E° [acv,87] rB(X) — 7 — E° [, 7] re(X:) )t + g, B,
pr=—gf — E' [V,gf] re(Xr).
Whenever U is convex, the optimality condition simplifies to

H(Le, v, pe, q) — H(Le, 0e, pr, qe) <0, Vv e U; P-as., ae-t e [0, T].
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Example: Convex and compact U

p part of the solution to a BSDE so it is the conditional expectation

T
Pt:*EU[@(XTaT)|]:t]+Eu[/ (~--)d5‘]:f}v (8)
t
where as before

9(Xe, 1) = g (X, 'l (X)]) + E° [V (X E° (X)) | re(X0).
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Example: Convex and compact U

p part of the solution to a BSDE so it is the conditional expectation

Pt:*Eﬁ[@(XﬂT) |]:t]+Eﬁ [/tT(~~-)d5‘]'—t}a (8)
where as before
60X 1) = & (X, EXle (X)) + E7 [Ty (X, ELrg (X)) ] ().

By Dynkin's formula,

Eolp(Xr, T) | Fil = 0 (X 1) + / E°l(...)(s) | Filds.
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Example: Convex and compact U

p part of the solution to a BSDE so it is the conditional expectation

pr=—E"[p(X7,T) | Fi]+ E* [/t (...)ds | J—'t} : (8)
where as before
9(Xe,t) = g (X EIrs(X)]) + E7 [V (Xe ETTra (X)) | (0.
By Dynkin's formula,
Eb(Xr, T) | Fi] = 6 (X.. 1) +/t E[(...)(s) | Fi]ds.

Itd-differentiating p from (8) and matching the diffusion coefficients yeilds

Gr = =Vx¢ (X, t) o (Xe).
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Example: Convex and compact U

p part of the solution to a BSDE so it is the conditional expectation

pr=—E"[p(X7,T) | Fi]+ E* [/t (...)ds | J—'t} : (8)
where as before
9(Xe,t) = g (X EIrs(X)]) + E7 [V (Xe ETTra (X)) | (0.
By Dynkin's formula,
Eb(Xr, T) | Fi] = 6 (X.. 1) +/t E[(...)(s) | Fi]ds.

Itd-differentiating p from (8) and matching the diffusion coefficients yeilds
g = =Vx (X, t) o(Xe).
The optimality condition (variation of #) relates i to q,

q:VuBl =V, P-as.,ae-te0,T].
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Example: Mean-field LQ (convex and compact U)

Consider on some admissible domain D € RY the mean-field LQ problem of
minimizing final variance

1 T u u
min = E {/ Lt|ut|2dt + LT | XT — E[LTXT]|2:| )
vedd 2 0

s.t. dL:’ = L'E’UtdBty L(LJI =1,
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Example: Mean-field LQ (convex and compact U)

Consider on some admissible domain D C RY the mean-field LQ problem of
minimizing final variance

ved 2
s.t. dL? = L’E’utch L(LJI =1,

]
mip 3| [ Lo+ 05 xr - ELExP).
0

The optimality condition says that d: = g; holds for an optimal control.

29/30



Example: Mean-field LQ (convex and compact U)

Consider on some admissible domain D C RY the mean-field LQ problem of
minimizing final variance

ved 2
s.t. dL? = L’E’utch L(LJI =1,

]
mip 3| [ Lo+ 05 xr - ELExP).
0

The optimality condition says that d: = g; holds for an optimal control.
With V.p(Xe, t) = (Xe — E?[X¢])" we identify g: and get:

d: = —(X; — E°[X:])*0(X:), P-a.s. for almost every t € [0, T].
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Example: Mean-field LQ (convex and compact U)

Consider on some admissible domain D C RY the mean-field LQ problem of
minimizing final variance

1 L. ” u

min > E VO LY|ue|dt + LY | X7 — E[LTXT]|2} ,
s.t. dL’E’ = L'E’Utch Lg = ].7

The optimality condition says that d: = g; holds for an optimal control.

With V.p(Xe, t) = (Xe — E?[X¢])" we identify g: and get:

d: = —(X; — E°[X:])*0(X:), P-a.s. for almost every t € [0, T].

{i takes P to P? under which the coordinate process solves the non-linear SDE

aX: = (a(X) — o (X)(X: — E*[X.])) dt + o(X,)dBY.
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Total variation distance on P(2)

For p1, v € P(RY), the total variation distance is defined by the formula

) =2 sup [u(B) = v(B). (9)

Define on F the total variation metric

d(P, Q) :=2sup |P(A) — Q(A)]. (10)
AcF
On the filtration F,
D:(Q,Q) =2 sup |Q(A) — Q(A)|, 0<t<T. (11)
ACF
It satisfies ~ _

For Q, 5 € P(Q2) with time marginals Q: :== Q oxf1 and ét = 6 OXfly then
d(Q:, Q) < D(Q,Q), 0<t<T. (13)

Endowed with the total variation metric D7, P(f2) is a complete metric space.
Moreover, Dt carries out the usual topology of weak convergence.
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