
The behavior of pedestrians near walls in
the mean-field approach to crowd dynamics

Alexander Aurell

Department of Mathematics, KTH Stockholm

Stochastic control, BSDEs and applications, Växjö 2019-11-26
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Pedestrian crowds in confined domains
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Example: Unidirectional pedestrian flow

Experimental results show that the average pedestrian speed can be higher in
the center of the domain (Daamen et al, 2007) or be higher near the boundary
(Zanlungo et al, 2012). Dependent on circumstances (congestion, etc).
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Pedestrian crowds in confined domains

Treatment of walls in pedestrian crowd models

Modeling approach Wall modeling

Social force Repulsive forces, disutility

Cellular automata (CA) Forbidden cells

Continuum limit of CA Neumann/no-flux boundary conditions

Hughes flow model Neumann/no-flux boundary conditions, oblique reflection

Mean-field games/control/type games Neumann/no-flux boundary conditions, disutility

Neumann/no-flux boundary conditions on the
pedestrian density correspond to reflection.
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In this talk we will introduce

sticky reflected SDEs of mean-field type with boundary diffusion

as an alternative way to model walls in the
mean-field approach to crowd dynamics.

The mean-field approach to crowd dynamics:

I Interacting system of controlled SDEs.

I Optimal control or differential game setup.

I In the limit (crowd size)→∞, interaction effects can be written in terms
of a mean field (if the interaction is weak, etc.).

Yields: control of McKean-Vlasov equations (Andersson & Djehiche, 2011;
Buchdahn et al, 2016; . . . ), mean-field games (Lasry&Lions, 2007; Huang et
al, 2007; . . . ), and mean-field type games (Tembine, 2017).
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Sticky reflected SDEs of mean-field type with boundary diffusion

Consider the SDE systemdXt =
1

2
d`0

t (X ) + 1{Xt>0}dBt , X0 = x0,

1{Xt=0}dt = γd`0
t (X ),

(1)

where

I x0 ∈ R+,

I γ ∈ (0,∞) is a given constant,

I `0(X ) is the local time of X at 0,

I B is a standard Brownian motion.

System (1) has no strong solution but a unique weak solution, called a
reflected Brownian motion X in R+ sticky at 0.

See e.g. Engelberg and Peskir (2014).
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Sticky reflected SDEs of mean-field type with boundary diffusion

Grothaus and Vosshall (2017) extended the result to a
bounded domain D ⊂ Rd with sticky C 2-smooth boundary ∂D.

Let

I Ω := C([0,T ];Rd) be path space,

I F the Borel σ-field over Ω,

I Xt(ω) = ω(t) the coordinate process,
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Sticky reflected SDEs of mean-field type with boundary diffusion

To write down the sticky reflected SDE with boundary diffusion system, let

I n(x) be the outward normal of ∂D at x ,

I π(x) := E − n(x)(n(x))∗, the orthogonal projection on the tangent space
of ∂D at x ,

I κ(x) := (π(x)∇) · n(x), the mean curvature of ∂D at x .

These quantities are uniformly bounded over ∂D.

There exists a unique probability measure P on (Ω,F) under which
dXt = 1D(Xt)dBt + 1∂D(Xt)

(
dB∂Dt − 1

2γ
n(Xt)dt

)
,

dB∂Dt = π(Xt) ◦ dBt = −1

2
κ(Xt)n(Xt)dt + π(Xt)dBt ,

B standard Brownian motion in Rd , X0 = x0 ∈ D̄, γ > 0,

and X is C([0,T ]; D̄)-valued P-a.s. (in particular, X is P-a.s. uniformly
bounded).

8 / 30



Sticky reflected SDEs of mean-field type with boundary diffusion

To write down the sticky reflected SDE with boundary diffusion system, let

I n(x) be the outward normal of ∂D at x ,

I π(x) := E − n(x)(n(x))∗, the orthogonal projection on the tangent space
of ∂D at x ,

I κ(x) := (π(x)∇) · n(x), the mean curvature of ∂D at x .

These quantities are uniformly bounded over ∂D.

There exists a unique probability measure P on (Ω,F) under which
dXt = 1D(Xt)dBt + 1∂D(Xt)

(
dB∂Dt − 1

2γ
n(Xt)dt

)
,

dB∂Dt = π(Xt) ◦ dBt = −1

2
κ(Xt)n(Xt)dt + π(Xt)dBt ,

B standard Brownian motion in Rd , X0 = x0 ∈ D̄, γ > 0,

and X is C([0,T ]; D̄)-valued P-a.s. (in particular, X is P-a.s. uniformly
bounded).

8 / 30



Sticky reflected SDEs of mean-field type with boundary diffusion

dXt = (1D(Xt) + 1∂D(Xt)π(Xt)) dBt − 1∂D(Xt)
1

2

(
κ(Xt) +

1

γ

)
n(Xt)dt

The sticky reflected SDE with boundary diffusion is composed of špace.1cm

I interior diffusion 1D(Xt)dBt ,

I boundary diffusion 1∂D(Xt)dB
∂D
t

I normal sticky reflection −1∂D(Xt)
1

2γ
n(Xt)dt

From now on, we abbreviate

dXt =: σ(Xt)dBt + a(Xt)dt.

The coefficients σ and a are bounded,

σ(Xt) := 1D(Xt) + 1∂D(Xt)π(Xt), a(Xt) := −1∂D(Xt)
1

2

(
κ(Xt) +

1

γ

)
n(Xt).
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The stickiness level γ

γ represents the level of stickiness of ∂D.

Let

I λ be the Lebesgue measure on Rd ,

I s be the surface measure on ∂D,

I ρ := 1Dαλ+ 1∂Dα
′s, α, α′ ∈ R.

Choosing
α = ᾱ/λ(D), α′ = (1− ᾱ)/s(∂D), ᾱ ∈ [0, 1],

ρ becomes a probability measure on Rd with full support on D̄.

The measure ρ is in fact the invariant distribution of Xt whenever

1

γ
=

ᾱ

(1− ᾱ)

s(∂D)

λ(D)
.

ᾱ→ 1 as γ → 0, and the invariant distribution ρ concentrates on D
ᾱ→ 0 as γ →∞, and the invariant distribution ρ concentrates on ∂D
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Sticky reflected SDEs of mean-field type with boundary diffusion

Interaction and control is introduced via Girsanov transformation.

Let F be the filtration generated by X completed with the P-null sets of Ω, and

I |x |t := sup0≤s≤t |xs |, 0 ≤ t ≤ T ,

I U ⊂ Rd and U := {u : [0,T ]× Ω→ U | u F-prog.meas.},

I Q(t) := Q ◦X−1
t denote the t-marginal distribution of X under Q ∈ P(Ω),

I β : [0,T ]× Ω× P(Rd)× U → Rd such that

(A) (β(t,X ,Q(t), ut))t≤T is F-prog.meas. for every Q ∈ P(Ω) and u ∈ U .

(B) For every t ∈ [0,T ], ω ∈ Ω, u ∈ U, and µ ∈ P(Rd),

|β(t, x , µ, u)| ≤ C

(
1 + |x |T +

∫
Rd

|y |µ(dy)

)
(C) For every t ∈ [0,T ], ω ∈ Ω, u ∈ U, and µ, µ′ ∈ P(Rd),∣∣β(t, ω, µ, u)− β(t, ω, µ′, u)

∣∣ ≤ C · dTV (µ, µ′)
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Sticky reflected SDEs of mean-field type with boundary diffusion

Theorem 1

Given u ∈ U , there exists a unique weak solution (Pu) to the sticky reflected
SDE of mean-field type with boundary diffusion

dXt = σ(Xt)dB
u
t +

(
a(Xt) + σ(Xt)β(t,Xt ,Pu(t), ut)

)
dt.

Under Pu the t-marginal distribution of X· is Pu(t) for t ∈ [0,T ] and X· is
almost surely C([0,T ]; D̄)-valued. Furthermore, Pu ∈ Pp(Ω).
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Weak optimal control of sticky reflected SDEs of mean-field type

Let
f : [0,T ]× Ω× P(Rd)× U → R,

g : Rd × P(Rd)→ R.

Consider the following finite time-horizon problem:

minu∈U J(u) = E u

[∫ T

0

f (t,X ,Pu(t), ut)dt + g(XT ,Pu(T ))

]

= E

[∫ T

0

Lu
t f (t,X ,Pu(t), ut)dt + Lu

Tg(XT ,Pu(T ))

]
s.t. dLu

t = Lu
t β(t,X ,Pu(t), u(t))dBt , Lu

0 = 1,

X is the coordinate process,

(2)

Problem (2) is a weak form mean-field type control problem.
The probability space is controlled via the likelihood Lu.
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Weak optimal control of sticky reflected SDEs of mean-field type

Additional assumptions on β, f , and g :

(D) For φ ∈ {β, f },

φu
t = φ(t,X ,E u[rφ(Xt)], ut) = φ(t,X ,E [Lu

t rφ(Xt)], ut),

and gu
T = g(XT ,E [Lu

T rg (XT )]), where rβ , rf , rg : Rd → Rd .

(E) For every u ∈ U , the process (f (t,X ,E u[rf (Xt)], ut))t is progressively
measurable with respect to F and (x , y) 7→ g(x , y) is Borel measurable.

(F) The functions (t, x , y , u) 7→ (f , β)(t, x , y , u) and (x , y) 7→ g(x , y) are twice
continuously differentiable with respect to y . Moreover, β, f and g and all their
derivatives up to second order with respect to y are continuous in (y , u), and
bounded.
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Weak optimal control of sticky reflected SDEs of mean-field type

In view of (A)-(F) Pontryagin’s type stochastic maximum principle is available
(Buckdahn et al, 2011, Honsker 2012).

Theorem 2

Assume that (û, Lû) is an optimal solution to the mean-field type control
problem (2). Then for all v ∈ U and a.e. t ∈ [0,T ] it holds P-a.s. that

H(Lû
t , v , pt , qt)−H(Lû

t , ût , pt , qt) +
1

2
[δ(Lβ)(t)]TPt [δ(Lβ)(t)] ≤ 0,

where
H(Lu

t , ut , pt , qt) := Lu
t β

u
t qt − Lu

t f
u
t ,

δ(Lβ)(t) := Lû
t (β(t,X ,E [Lû

t rβ(Xt)], v)− βû
t ),

dpt = −
(
qtβ

û
t + E

[
qtL

û
t∇yβ

û
t

]
rβ(Xt)− f ût − E

[
Lût∇y f

û
t

]
rf (Xt)

)
dt + qtdBt ,

pT = −g û
T − E

[
LûT∇yg

û
T

]
rg (XT ),

dPt = −
((

βû
t + E [Lût∇yβ

û
t ]rβ(Xt)

)2
Pt + 2

(
β̂û
t + E [Lût∇yβ

û
t ]rβ(Xt)

)
Qt

+ E [qt∇yβ
û
t ]rβ(Xt)− E [∇y f

û
t ]rf (Xt)

)
dt + QtdBt ,

PT = 0.
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Identifying optimal controls when U is convex.

Whenever U is convex, the optimality condition simplifies to

(v − ût)
∗∇uH(Lû

t , ût , pt , qt) ≤ 0, ∀v ∈ U; P-a.s., a.e.-t ∈ [0,T ].

Assume that û is optimal. A matching argument yields

qt = −∇xφ (Xt , t)σ(Xt),

where φ(XT ,T ) is the terminal condition for p,

φ(Xt , t) := g
(
Xt ,E

û[rg (Xt)]
)

+ E û
[
∇yg

(
Xt ,E

û[rg (Xt))]
)]

rg (Xt),

and the optimality condition (variation of H) relates û to q,

qt∇uβ
û
t = ∇uf

û
t , P-a.s., a.e.-t ∈ [0,T ].
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Example: Unidirectional pedestrian flow

Experimental results show that average pedestrian speed in a cross-section of a
corridor can be higher in the center than near the walls (Daamen et al, 2007),
but also higher near the walls (Zanlungo et al, 2012), depending on the
circumstances (congestion, etc).
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Example: Unidirectional pedestrian flow

Let D be a long narrow corridor with exit xT and entrance x0 in opposite ends.min
u·∈U

1

2
E

[∫ 1

0

Lu
t f (t,X·,E [Lu

t rf (Xt)], ut)dt + Lu
T |XT − xT |2

]
,

s.t. dLu
t = Lu

t utdBt , Lu
0 = 1.

f is a congestion-type running cost:

f (t,X·,E [Lu
t rf (Xt)], ut) = C(Xt) {1 + h (t,X·,E

u[rf (Xt)])} |ut |2,

where

I |u|2, cf > 0, is the cost of moving in free space;

I h|u|2 is the additional cost to move in congested areas;

I C(Xt) := ξ1Γ(Xt) + 1D(Xt), ξ > 0, monitors f on the boundary ∂D.

Lower ξ yields lower overall cost of moving on ∂D and vice versa.
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Example: Unidirectional pedestrian flow

Assuming U is convex, an optimal control satisfies

ût =
σ(Xt)(Xt − xT )

C(Xt) (1 + h(t,X·,E û[rf (Xt)])
, P-a.s., a.e.-t ∈ [0,T ].

û implements the following strategy:

I Move towards the exit xT , but scale the speed according to the local
congestion.
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Example: Unidirectional pedestrian flow

ût =
σ(Xt)(Xt − xT )

C(Xt) (1 + h(t,X·,E û[rf (Xt)]))
.

We will compare two congestion costs

I friendly
h = h1 := |X2(t)− E û[X2(t)]|

I averse

h = h2 :=
1

|X2(t)− E û[X2(t)]|
In both cases,

I rf ((x1, x2)) = x2

I X2(t) is the y -component of Xt (perpendicular to the corridor walls).
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Example: Unidirectional pedestrian flow

Estimated cross-section mean speed profiles
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(a) Congestion friendly (h = h1).
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(b) Congestion averse (h = h2).

I Boundary movement speed is indeed monitored through ξ.
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Particle picture: The corresponding microscopic model

Consider N ∈ N (non-transformed, independent) sticky reflected SDEs with
boundary diffusion {

dX i
t = a(X i

t )dt + σ(X i
t )dB i

t ,

X i
0 = xi , i = 1, . . . ,N.

(3)

Grothaus and Vosshall (2017):

There exists a unique probability measure PN on (Ω,F ), where
Ω := C([0,T ];RNd) and F is the corresponding filtration. Under PN ,

(X 1, . . . ,XN) satisfies (3) and is C([0,T ]; D̄N)-valued PN -a.s.
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Particle picture: The corresponding microscopic model

Weak interaction and control can be introduced in the particle system

Given u := (u1, . . . , uN) ∈ UN , let µN(t) := 1
N

∑
i=1 δX i

t
and

dLu
i,t = Lu

i,tβ(t,X i , µN(t), ui
t)dB

i
t , Lu

i,0 = 1, i = 1, . . . ,N.

LN,u
t :=

N∏
i=1

Lu
i,t .

LN,u
t defines a Girsanov transformation of PN to PN,u.

Under PN,u the coordinate process is C([0,T ]; D̄)-valued a.s. and satisfies{
dX i

t = (σ(X i
t )β(t,X i

t , µ
N(t), ui

t) + a(X i
t ))dt + σ(X i

t )dB i,u
t ,

X i
0 = x i

0, i = 1, . . . ,N,

where B i,u is a PN,u-Brownian motion. Also, PN,u ∈ Pp((C([0,T ]; D̄)N).
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Particle picture: The corresponding microscopic model

Social cost for the particle system:

JN(u) :=
1

N

N∑
i=1

EN,u

[∫ T

0

f (t,X i , µN(t), ui
t)dt + g(X i

T , µ
N(T ))

]

Minimization of JN(u) is a cooperative scenario.

If the mean-field optimal control is closed-loop, the mean-field system can be
approximated by a particle system and the mean-field cost by a social cost.
The theorem on the next page relies on Theorem 3.2 of Lacker (2018).
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Particle picture: The corresponding microscopic model

Theorem 3

Let u ∈ U be a closed-loop control, i.e. ut(ω) = ϕ(ω·∧t) for some measurable
function ϕ : (Ω,F)→ (U,B(U)). Given the control u and a random variable ξ
with law λ (nonatomic with support only on D̄), the sticky reflected SDE of
mean-field type with boundary diffusion{

dXt = (a(Xt) + σ(Xt)β(t,X·,Pu(t), ϕ(X·∧t))) dt + σ(Xt)dBt ,

X0 = ξ,
(4)

can be approximated by the interacting particle system with all components
using the fixed closed-loop control u. Furthermore, the value of the mean-field
cost functional J at u is the asymptotic social cost of the interacting particle
system as N →∞ when all the XN,i s are using the fixed control u. More
specifically,

lim
N→∞

DT

(
PN,u ◦ (XN,1

· , . . . ,XN,k
· )−1, (Pu ◦ X−1

· )⊗k
)

= 0, (5)

with u = (u, . . . , u), and

lim
N→∞

1

N

N∑
i=1

J i (u, . . . , u)→ J(u). (6)
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Conclusions

I Mean-field approach to crowd dynamics
I congestion, crowd aversion, etc.
I decision-based modeling with anticipating agents
I correspondence between micro- and macroscopic picture

I Sticky reflected SDEs of mean-field type with boundary diffusion
I as an alternative to reflective boundary conditions in confined domains
I pedestrians no longer “bounce” at the boundary
I pedestrians may interact and take actions while spending time at the

boundary
I corresponds to a microscopic model

Thank you!
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Examples: Convex and compact U

Assume that (û, L̂) is an optimal solution for the mean-field type control
problem. Recall the first order adjoint equation,

dpt = −
(
qtβ

û
t + E

[
qtL

û
t∇yβ

û
t

]
rβ(Xt)

− f ût − E
[
Lû
t∇y f

û
t

]
rf (Xt)

)
dt + qtdBt ,

pT = −g û
T − E

[
Lû
T∇yg

û
T

]
rg (XT ).

(7)

Rewriting E [Lû
tYt ] = E û[Yt ] and changing measure to Pû,

dpt = −
(
E û
[
qt∇yβ

û
t

]
rβ(Xt)− f ût − E û

[
∇y f

û
t

]
rf (Xt)

)
dt + qtdB

û
t ,

pT = −g û
T − E û

[
∇yg

û
T

]
rg (XT ).

Whenever U is convex, the optimality condition simplifies to

H(L̂t , v , pt , qt)−H(L̂t , ût , pt , qt) ≤ 0, ∀v ∈ U; P-a.s., a.e.-t ∈ [0,T ].
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û
t + E

[
qtL

û
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û
t

]
rf (Xt)

)
dt + qtdBt ,

pT = −g û
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[
∇yg

û
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Example: Convex and compact U

p part of the solution to a BSDE so it is the conditional expectation

pt = −E û [φ (XT ,T ) | Ft ] + E û

[∫ T

t

(. . . )ds | Ft

]
, (8)

where as before

φ(Xt , t) := g
(
Xt ,E

û[rg (Xt)]
)

+ E û
[
∇yg

(
Xt ,E

û[rg (Xt))]
)]

rg (Xt).

By Dynkin’s formula,

E û[φ(XT ,T ) | Ft ] = φ (Xt , t) +

∫ T

t

E û[(. . . )(s) | Ft ]ds.

Itô-differentiating p from (8) and matching the diffusion coefficients yeilds

qt = −∇xφ (Xt , t)σ(Xt).

The optimality condition (variation of H) relates û to q,

qt∇uβ
û
t = ∇uf

û
t , P-a.s., a.e.-t ∈ [0,T ].
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Itô-differentiating p from (8) and matching the diffusion coefficients yeilds

qt = −∇xφ (Xt , t)σ(Xt).

The optimality condition (variation of H) relates û to q,
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The optimality condition (variation of H) relates û to q,

qt∇uβ
û
t = ∇uf

û
t , P-a.s., a.e.-t ∈ [0,T ].
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Example: Mean-field LQ (convex and compact U)

Consider on some admissible domain D ⊂ Rd the mean-field LQ problem of
minimizing final variancemin

u∈U

1

2
E

[∫ T

0

Lu
t |ut |2dt + Lu

T |XT − E [Lu
TXT ]|2

]
,

s.t. dLu
t = Lu

t utdBt , Lu
0 = 1,

The optimality condition says that ût = q∗t holds for an optimal control.

With ∇xφ(Xt , t) =
(
Xt − E û[Xt ]

)∗
we identify qt and get:

ût = −(Xt − E û[Xt ])
∗σ(Xt), P-a.s. for almost every t ∈ [0,T ].

û takes P to Pû under which the coordinate process solves the non-linear SDE

dXt =
(
a(Xt)− σ(Xt)(Xt − E û[Xt ])

)
dt + σ(Xt)dB

û
t .
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∗σ(Xt), P-a.s. for almost every t ∈ [0,T ].
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Total variation distance on P(Ω)

For µ, ν ∈ P(Rd), the total variation distance is defined by the formula

d(µ, ν) = 2 sup
B∈B(Rd )

|µ(B)− ν(B)|. (9)

Define on F the total variation metric

d(P,Q) := 2 sup
A∈F
|P(A)− Q(A)|. (10)

On the filtration F,

Dt(Q, Q̃) := 2 sup
A∈Ft

|Q(A)− Q̃(A)|, 0 ≤ t ≤ T . (11)

It satisfies
Ds(Q, Q̃) ≤ Dt(Q, Q̃), 0 ≤ s ≤ t. (12)

For Q, Q̃ ∈ P(Ω) with time marginals Qt := Q ◦ x−1
t and Q̃t := Q̃ ◦ x−1

t , then

d(Qt , Q̃t) ≤ Dt(Q, Q̃), 0 ≤ t ≤ T . (13)

Endowed with the total variation metric DT , P(Ω) is a complete metric space.
Moreover, DT carries out the usual topology of weak convergence.
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