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Introduction

Mean-field games?
Mean-field type games?
Mean-field control theory?

Backward stochastic differential equations?
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Introduction: deterministic optimal control (finite horizon):

Minimize or maximize
T
J(U('))=/ F(x(t), u(t))dt + h(x(T)) (1)
0
with respect to v : [0, T] — U, subject to

{)’((t) = b(x(t),u(t)), 0<t<T,

x(0) = xo, (2)

where U is a given set of control values.
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Introduction: stochastic optimal control (finite horizon)?! :

Minimize or maximize
.
Juw)=E [/ F(Xe, ue)dt + h(XT)| | 3)
0
with respect to v : [0, T| — U, subject to

{dXt = b(X, u))dt + o(Xe, u)dWe, 0<t< T, @

Xo = Xo.

1Jiongmin Yong and Xun Yu Zhou. Stochastic controls: Hamiltonian systems and HJB equations. \ol. 43. Springer Science &
Business Media, 1999.
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1.

Introduction: mean-field optimal control (finite horizon)

Minimize or maximize
) = [ [ #0 £V et + b0, 1) )

with respect to v : [0, T] — U, subject to

{dXt = b(Xe, E[X.], u)dt + o(Xe, E[X.], u)dWs, 0<t< T, )

Xo = xo.
" Control of SDEs of mean-field type”
" Control of McKean-Vlasov equations”
Example (non-linear in expectation):
J(u.) = Var(Xt)
= E X3 - ED T

I Daniel Andersson and Boualem Djehiche. “A maximum principle for SDEs of mean-field type”. In: Applied Mathematics &
Optimization 63.3 (2011), pp. 341-356.
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Introduction

Optimal control theory tries to answer two questions:

» Existence of a minimum/maximum of the performance functional J.
» Explicit computation of such a minimum/maximum.

> The Bellman principle, which yields the Hamilton-Jacobi-Bellman equation
(HJB) for the value function.

> Pontryagin's maximum principle which yields the Hamiltonian system for
"the derivative” of the value function.
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Introduction: mean-field optimal control problems as large population limits

Consider N agents with state dynamics

{dx{ = b(X[, 1, ul)dt + o(X, Y ul)dWi, 0<t< T, )

i i
Xo = xp,

N . e .
where 1l = % dica Ox;, cooperating to minimize/maximize

N T
i ]- i i i
J’N(u.l,...,u.N):NE:E{/ FOXE i ud)dt + h(X5, D). (9)
i=1 0

Under some conditions...

> The control found by solving the mean-field optimal control problem
(previous slide) approximates the solution to (8)-(9) .

> Results exists on the commutation of optimization and limit taking.

IDaniel Lacker. “Limit Theory for Controlled McKean-Vlasov Dynamics”. In: SIAM Journal on Control and Optimization 55.3
(2017), pp. 1641-1672.
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Introduction: mean-field games as large population limits

Instead of cooperating, let the N agents compete. Given the control chosen by
all other agents, u”', agent i wants to minimize

. . . T . . .
QSN T =E {/ FXE pl, ul)dt + h(X'Thu%} . (10)
0

A Nash equilibrium (22, ..., o) for this differential game is given by

P Musahy > M@ e, Yo, Vi=1,...,N. (11)
A Nash equilibrium can be approximated by a fixed point scheme

i) Fix a deterministic function p: : [0, T] = P2(R?).

ii) Solve the stochastic control problem (single agent!):
T
0. = argmin E {/ f(Xe, poe, ue)dt + (X7, ur) (12)
u. 0

iii) Determine the function /i, : [0, T| — Po(RY) such that i, = Po (X)) " for
all t € [0, T], X. being the dynamic corresponding to ..

This matching problem (often in PDE form) is called a "Mean-Field Game” .*2

1Minyi Huang, Roland P Malhamé, Peter E Caines, et al. “Large population stochastic dynamic games: closed-loop McKean-Vlasov
systems and the Nash certainty equivalence principle”. In: Communications in Information & Systems 6.3 (2006), pp. 221-252.

2 Jean-Michel Lasry and Pierre-Louis Lions. “Mean field games”. In: Japanese journal of mathematics 2.1 (2007), pp. 229-260.
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Introduction: mean-field type game

Let there be N agents with dynamics

dX{ = b (X}, Po (X)) ut, ..., X Po (X)) ul, ..., ul)dt
+o'(c. XL P o (X))l ) dW, (13)
X5 = x5
Agent i replies to the other agents choice of control u~' by minimizing its best
reply functional

Sy = E[/ Fil X Po (XDl )de
0 (14)
PR X P (X’T)’l,...)].

Players not identical (exchangeable) anymore!

A mean-field type game consists of major players, that can influence their
distributions, and asks: what is the equilibrium behavior of these agents?
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Introduction: differentiation of measure-valued functions

A variation in control gives a variation in the marginal distribution, and
thus we must be able to handle variation of measure-valued functions.

Underlying probability space is rich enough, so that for every u € 772(Rd),
there exists a square-integrable random variable X whose distribution is (.
Consider f : P>(R?) — R. We can write f(u) =: F(X) and differentiate F is
Frechét sense, whenever there exists a linear functional DF[X] : L*(F;RY) — R
such that

F(X +Y) = F(X) = (DF[X], Y) + o(][Y]l2). (15)
By Riesz' representation theorem, DF[X] is unique and there exists a Borel
function @[] : R? — R such that ¢[u](X) = DF[X], therefore!

F(u') = () = E [6P o (X) JX)(X = X)] + 01X = X[l2).  (16)
Denote 9, f(p; x) := ¢[u](x), and we have the identity

DF[X] = 8,f(Po (X) ! X) = 9, f(Po(X)™H). (17)

LRainer Buckdahn, Juan Li, and Jin Ma. "A stochastic maximum principle for general mean-field systems”. In: Applied Mathematics

& Optimization 74.3 (2016), pp. 507-534.
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Introduction: differentiation of measure-valued functions

Example: If f(11) = ([0 xdp(x))* then
E[X + tY] — E[X]* = E[2E[X]Y] + o(t) (18)
and 9, f(11) = 2 f4 xdpi(x)-
If f takes another argument, &, then (with =P o (X))
F(& 1) = F(E ) = E [0uFE i X)X = X)] +o(IX' = XI2),  (19)
where the expectation is not taken over £. To shorten notation,
E[0uf(€ m X)X = X)| = E[@uf(€.m) (X' = X)) (20)

For expectations over "the other arguments”, we write

E (0,61 X)| = E[(0uF (. ))] (21)
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Introduction: backward stochastic differential equations (BSDE)

Deterministic setting: reverse time to get control problem with state
constraint at t = T. Stochastic setting: time reversal destroys adaptedness!

Given filtration F = {F:}¢>0, any x7 € L%, (2;R”) induces an F-martingale
¢ = E[x7 | Ft]. (22)

If F is generated by a Wiener process W., the martingale representation
theorem then gives existence of a unique square-integrable process Z;: such that

T
Xt :XTJF/ thWt. (23)
t

Z. works as a projection and makes X. progressively measurable!

In this fashion, we can construct BSDEs with general drift.! Given a suitable
driver-terminal condition pair (f, x7), (X, Z.) solves the BSDE

dX; = fdt + Z.dWe, X7 = x7 (24)

if (together with some regularity)

T T
X, = xr — / fdt — / Z.dw.. (25)
t t

L jianfeng Zhang. Backward Stochastic Differential Equations: From Linear to Fully Nonlinear Theory. Vol 86. Springer, 2017.
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Introduction: control/games of mean-field BSDEs

Two problems to be presented in this talk:

1. A mean-field type control based model for pedestrian motion, where the
state dynamics is a BSDE:

Find 4. such that J(v.) > J(4.), Yu. € U,
Given a control, the state X. satisfies a mean-field BSDE.

2. A mean-field type game between two players whose state dynamics are
BSDEs:

{Find (@, 02) such that J'(u.; 077) > Ji(a'; 077), Yu. €U, i=1,2,

Given controls, the state X/ satisfies a mean-field BSDE.
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Pedestrian crowd motion: quick facts

Empirical studies of human crowds have been conducted since the '50s.

Basic guidelines for pedestrian behavior: will to reach specific targets, repulsion
from other individuals and deterministic if the crowd is sparse but partially
random if the crowd is dense?.

Humans motion is decision-based.

Classical particles "Smart agents”
P Robust - interaction only through collisions P Fragile - avoidance of collisions and obstacles
Blindness - dynamics ruled by inertia P Vision - dynamics ruled at least partially by

>
P Local - interaction is pointwise decision
| 4

o ) ) > B . .
Isotropy - all directions equally influential Nonlocal - interaction at a distance

P Anisotropy - some directions more influential
than others

1BD Hankin and R Wright. “Passenger flow in subways”. In: Journal of the Operational Research Society 9.2 (1958), pp. 81-88.
2E Cristiani, B Piccoli, and A Tosin. “Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic
viewpoints”. In: Mathematical modeling of collective behavior in socio-economic and life sciences. Springer, 2010, pp. 337-364.
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Pedestrian crowd motion: mathematical modeling approaches

Microscopic

D Helbing and P Molnar. “Social force model for pedestrian dynamics”. In: Physical review E 51.5 (1995), p. 4282
A Schadschneider. “Cellular automaton approach to pedestrian dynamics-theory”. In: Pedestrian and Evacuation
Dynamics (2002), pp. 75-85

S Okazaki. “A study of pedestrian movement in architectural space, part 1: Pedestrian movement by the
application on of magnetic models”. In: Trans. AlJ 283 (1979), pp. 111-119

Macroscopic

LF Henderson. “The statistics of crowd fluids”. In: Nature 229.5284 (1971), p. 381

R Hughes. “The flow of human crowds”. In: Annual review of fluid mechanics 35.1 (2003), pp. 169-182
S Hoogendoorn and P Bovy. “Pedestrian route-choice and activity scheduling theory and models”. In
Transportation Research Part B: Methodological 38.2 (2004), pp. 169-190

Mesoscopic/Kinetic

C Dogbe. “On the modelling of crowd dynamics by generalized kinetic models”. In: Journal of Mathematical
Analysis and Applications 387.2 (2012), pp. 512-532

G Albi et al. “Mean field control hierarchy”. In: Applied Mathematics & Optimization 76.1 (2017), pp. 93-135

Mean-field games: Mean-field type games/control:
a macroscopic approximation a macroscopic approximation
of a microscopic model of a microscopic model
or

a distribution dependent
microscopic model
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Pedestrian crowd modeling: heuristics of the mean-field approach

» The dynamics of a pedestrians is given by
> change in position = velocity + noise

The pedestrian controls it's velocity.

> The pedestrian controls it's velocity rationally, it minimizes
> Expected cost
=E [fOT f (energy use(t), interaction(t)) dt + deviation from final target]

> The interaction is assumed to depend on an aggregate of distances to other
pedestrians:

» Lots of pedestrians in my neighborhood - congestion cost
> Seeking the company of others - social gain

> To evaluate its interaction cost, the pedestrian anticipates the movement of
other pedestrians via the distribution of the crowd.

Many possible extensions:
controlled noise, multiple interacting crowds, fast exit times, interaction with the
environment, common noise, hard congestion.
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Pedestrian crowd motion: mean-field models

Early works

S Hoogendoorn and P Bovy. “Pedestrian route-choice and activity scheduling theory and models”.
In: Transportation Research Part B: Methodological 38.2 (2004), pp. 169-190

C Dogbé. “Modeling crowd dynamics by the mean-field limit approach”. In: Mathematical and
Computer Modelling 52.9-10 (2010), pp. 1506-1520

Aversion and congestion

A Lachapelle and M-T Wolfram. “On a mean field game approach modeling congestion and
aversion in pedestrian crowds”. In: Transportation research part B: methodological 45.10 (2011),
pp. 1572-1589

Y Achdou and M Lauriere. “Mean field type control with congestion”. In: Applied Mathematics
& Optimization 73.3 (2016), pp. 393-418

Fast exits (evacuation)

M Burger et al. “On a mean field game optimal control approach modeling fast exit scenarios in
human crowds”. In: Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on. |EEE.
2013, pp. 3128-3133

M Burger et al. “Mean field games with nonlinear mobilities in pedestrian dynamics”. In:
Discrete and Continuous Dynamical Systems-Series B (2014)

B Djehiche, A Tcheukam, and H Tembine. “A Mean-Field Game of Evacuation in Multilevel
Building”. In: IEEE Transactions on Automatic Control 62.10 (2017), pp. 5154-5169

Multi-population

E Feleqi. “The derivation of ergodic mean field game equations for several populations of players”.
In: Dynamic Games and Applications 3.4 (2013), pp. 523-536

M Cirant. “Multi-population mean field games systems with Neumann boundary conditions”. In:

Journal de Mathématiques Pures et Appliquées 103.5 (2015), pp. 1294-1315

Y Achdou, M Bardi, and M Cirant. “Mean field games models of segregation”. In: Mathematical

Models and Methods in Applied Sciences 27.01 (2017), pp. 75-113
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Pedestrian crowd motion: rationality

Another model categorization: level of rationality!.

Rationality level Information structure Area of application

Irrational - Panic situations

Basic Destination and environment Movement in large unfamiliar environments
Rational Current position of other pedestrians Movement in small and well-known environment
Highly rational Forecast of other pedestrians movement Movement in small and well-known environment
Optimal Omnipotent central planner " Soldiers”

Mean field games can model highly rational pedestrians.

Mean-field optimal control can model optimal pedestrians.

LE Cristiani, F Priuli, and A Tosin. “Modeling rationality to control self-organization of crowds: an environmental approach”. In
SIAM Journal on Applied Mathematics 75.2 (2015), pp. 605-629.
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Tagged pedestrian motion: control of mean-field BSDEs

Stochastic dynamics with initial condition cannot model motion that has to terminate
in a target location at time horizon T, such as:

Guards moving to a security threat

Medical personnel moving to a patient

Fire-fighters moving to a fire

Deliveries

Control of mean-field BSDEs can be a tool for centrally planned decision-making for
pedestrian groups, who are forced to reach a target position.

Recall, mean-field control is suitable for pedestrian crowd modeling when

e the central planner is rational and has the ability to anticipate the behaviour of
other pedestrians

e aggegate effects are considered
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Tagged pedestrian motion: control of mean-field BSDEs

The motion of our representative agent is described by a BSDE,

dXy = b(t, Xe,Po (Xe) ™Y, Ze, ue)dt + ZidW, (26)
XT = XT.
The central planner faces the optimization problem
T
min  E {/ F(t, Xe,Po (X;)™Y, ue)dt + h(Xo,Po (Xo)™1)
u.
; (27)

sit. (X, Z) solves (26),
u. €U.
From a modeling point of view, the tagged pedestrian uses two controls:

> (ut)te[O,T] - picked by an optimization procedure to reduce energy use,
movement in densely crowded areas

> (Zt)icio. ) - to predict the best path to yr given (ut).co, 7], given implicitly by
the martingale representation theorem.

A spike pertubation technique leads to a Pontryagin type maximum principle!.

LA Aurell and B Djehiche. “Modeling tagged pedestrian motion: a mean-field type control approach”. In: arXiv preprint
arXiv:1801.08777v2 (2018).

20/39



Tagged pedestrian motion: control of mean-field BSDEs

Assumptions: i) u > b(-, -, -, -, u) is Lipschitz and its y-,z- and p-derivatives are bounded ii) b(-, 0, 8¢, 0, u) is square-integrable for

allu € Uii) y1 € LZFT(Q; RY) iv) admissible controls (L4[0, T]) take values in the compact set U and are square-integrable.

Theorem - necessary conditions

Suppose that ()A( 2., 0.) solves the control problem. Let H be the Hamiltonian
H(t7 X, |, Z, U, P) = b(t7 X5 Uy Z, u)p - f(t7X7 123 LI), (28)
and let p. solve the adjoint equation (where Pg :=To (Xe)™1),

dp: = — {8XH(t,)%t,]P))ﬂ(t, 21:7 O, Pt) + E [*(8MH(t,)%t7]P)ﬂ(t, 21:, O, Pt))] } dt
— Oz H(t, )%r:PXNZt,lAtht)dWh

po = Bxh()A(o,PXO) + E [*(Buh()A(o, th))] .
(29)
Then for a.e. t, P-a.s.,

Or = argmax H(t, )A(t,IP’)A( s Ze, cx, pr). (30)
acU t

Theorem - sufficient conditions

Suppose that H is concave in (x, i, z, u), h is convex in (x, ) and . satisfies
(30) P-a.s. for a.e. t. Then (X.,Z.,0.) solves the control problem.
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pedestrian motion: control of mean-field BSDEs

1
min  -E {/ Au? + X (Xe — E[X])%dt + A3(Xo — [0.2,0.2]T)?
u.eu 2 0

(31)
st dXe = (ur + We)dt + ZedWs, Y1 =1[2,2].

t=0 4975 t =0.6475 t=0.7975 t =0.8975 t =0.9775
2
15| i
<L
0.5 L
00 1
X1
= t o 6475 t=0. 7975 t =0. 3975 t o 9775
2 2
15| £
<
05 L
0

Upper row: (A1, Az, )\3) = (50, 50, 10).
Lower row: (A1, A2, A3) = (50,0, 10).
Simulations based on the least-square Monte Carlo method?.

1C Bender and J Steiner. “Least-squares Monte Carlo for backward SDEs”. In: Numerical methods in finance. Springer, 2012,
pp. 257-289.
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Mean-field type games with BSDE dynamics

Nash equilibrium: for i =1, ... #players,

Best reply;(own eq. control; other’s eq. controls) (32)
< Best reply,(any control; other’s eq. controls).

In what follows,

» Best reply functional depends on marginal state distributions

» State dynamics are mean-field BSDEs

We start with an example...
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Mean-field type games with BSDE dynamics: LQ example

Two players seek the Nash equilibrium: player 1 has state dynamics

1 (33)

dX} = (aruf + cuWt + coW?)dt + ZPdW}E + ZP2dw?,
X':Il' = X7,

and wants to minimize

-
S u?) = E U %(u}f + %(xg ~E[X?])dt + %(xo1 —x?|. (39)
0

Player 2 has state dynamics

{dxf = (2207 + cr W + cuW2)dt + Z2 dWE + ZZ2dWP, (35)

X2 =,
and wants to minimize
T
Lo =E [/ %(uff + %(XE — E[X}])’dt + %(Xe2 —-x3)’|. (36)
0

Alongside, a central planner wants to minimize the social cost
J(ut,?) = ZJi(uf; uh. (37)
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Mean-field type games with BSDE dynamics: LQ example

MFTG state - player 1 (black), player 2 (red)
T T T T t T ;

~ e
~.00)
AN
2 . . . . . . — ]
[ 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
time

MFTC state - player 1 (black), player 2 (red)
T T T T t T T

= Sem— 1
e
[ 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
time
9 Sﬂclal cost - MFTG (CI!CleS). MFTC (stars)
o
_ _(§> %%OUG -065@@90—01 Q%M oo
2 8 *O@ x 48 O*é)@*z‘g e »ms OQ**O 1
™ R A r R M e F i *** *?@éf * *’“* Ry
70 10 20 30 40 50 GD 7D 80 90 100
sample i
1
XT ai c Ci2 rn P1 %1 X0
-2 1 3 0 1 1 1 N(0,0.1)
2 2
XT ar 1 22 r P2 %) X0
2 1 0 3 1 1 1 N(0,0.1)

Game: find ﬁ_l, 4% such that for i = 1,2,
S 0=y > S(aamh, v el
where
dX} = (aiul + caW} + coW?)dt
+ZMdwW} + ZPaw?,

i i
X: = x7,

el 30

2,2 22
+?(Xo —Xo)]

S
=
~:-

=

|
-
Il

) +*(X E[X!])dt

Optimal control: find E_l, % such that
J(u.,v.) > J(@, @)

for all (u.,v.) € U* x U?, where

J=1+ 2

Social cost: Mean player cost.
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Mean-field type games with BSDE dynamics: LQ example

MFTG state - player 1 (black), player 2 (red)
T : T T r ; T

e T
1 4
>N | Game: find ot ﬁ,z such that for i = 1, 2,
29 - , ch hat for 1= 1.2,
L — J(usa™y > J@haT"), vu e,
720 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1
time where
6 MFTC state - player 1 (black), player 2 (red) i P
S dX; = (aiu; + ca W, + coW;)dt
1 —— ] ) )
6 ] + Z'dw} + Z2dw?,
> af M 4 . .
i i
2 . . . | ! | | Y Xy = x1,
[ 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
time i —iy
Social cost - MFTG (circles), MFTC (stars) J (u_, u. ) -
O e} 0, T r 2
- 153@%%%%%&@@@% 2 é%%%%@@%ﬂ% £ / 2@ + 20 - EX1d
2 0
12*&?‘*& m—-ﬁwﬁﬁ@%ﬁ ;;Z%‘f -”‘“‘E‘--wﬁ*@‘ﬁﬁ V2 2 22
10 + f(Xo — XU)
[ 10 30 40 50 60 70 BO 90 100 2
sample i
Optimal control: find L'l,l, 7% such that
1 1 12
X7 a ci c12 n Pl v Xo J(u.,v.) > J(a, @)

2 1 3 0 1 4 1 N(0,0.1) forall (u,v.) € U" x U, where J = J* + J°.

2
XT as @1 €22 r P2 v X0 .
Social cost: Mean player cost.
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Mean-field type games with BSDE dynamics: SMP

On (Q, F,F := {F:}e>0, P), satisfying the usual conditions, lives
> di- and dy-dimensional Wiener processes W' and W?
> two terminal values x7,x7 € L5 (Q;RY)
> Fo-measurable ¢ (additional randomness at t = 0)
These five objects are independent and (W2, W2 ¢) generate F.
Let (Ui, dyi) be separable metric space, admissible controls for player / are

T

U = {u [0, T] = U’ | F — adapted, E/ dyi(us)’ds < oo} (38)
0

Given a pair of admissible controls (u?, u?), the state dynamics are
dX{ = b'(8},0;", Z)dt + Z['dW/ + Z[?dW{, Xr =xr, i=1,2, (39)

where ©% := (X{,Po (X])7, u}) and Z, = [Z1 Z}2 722 Z7).
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Mean-field type games with BSDE dynamics: SMP

Assumption 1: b'(-,0,...,0) is square integrable and given v, b'(-, v) is
Fe-progressively measurable.

Assumption 2: Given a pair of admissible controls, b’ is Lipschitz-continuous
in all other arguments (Wasserstein 2-metric for measures, trace-norm for
matrices).

These assumptions implies existence and uniqueness.?

Under assumption 1 and 2, there exists a unique solution (X!, [Z™, Z™]),

i =1,2, to the mean-field BSDE system modelling player state dynam-
ics. Furthermore, Z” is square integrable and E[SUPte[o,T] X?] < .

The best reply ('cost’) functional of player i is
J(uu) = E U Fi(©!, 07 )dt + h (6,057 | (40)
0

where 0} = (X{,P o (X/)™"). Goal: characterize Nash equilibria to this game.

LRainer Buckdahn, Juan Li, and Shige Peng. “Mean-field backward stochastic differential equations and related partial differential
equations”. In: Stochastic Processes and their Applications 119.10 (2009), pp. 3133-3154.

28/39



Mean-field type games with BSDE dynamics: SMP

1. Assume that there exists an equilibrium control pair 4}, 42. Make a spike
variation of @; for some u. € U* and E. C [0, T] of size |E | =c¢,

0, t T)\E.
E:,l = {ut7 € [07 ]\ ) (41)
uy, te€ E.

Whenever player 1 uses i, denote state dynamics by X", i =1, 2.

2. Compare the perturbed control's best reply to the equilibrium,
T
JN @t %) — JY(at, 0%) = [/ for — Rt + hgt — hé} : (42)
0

3. Approximate the cost difference,

2
Ry — o= > {0uhb(Xs7 = X3) + E [(0h0) (K57 - X)) }
j=1
(43)

+ Z{ (|X€,j |) +o (E[l)’(Oe,j _ )?é|2]1/2)} .
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Mean-field type games with BSDE dynamics: SMP

Assumption 3: b’ f' h' are, for all t, a.s. differentiable at the equilibrium,
wheAre their deri\ia_xtives are a.s. uniformly bounded for all t and

8,iho + E[*(9,:h5)] € L%, (4 RY).

Assumption 4: b' is a.s. Lipschitz in the controls, for all t.

4. Find the first variation processes: ' _ _
Let assumptions 1-4 be in place and let (Y, [V}, V/?]), i = 1,2 solve the linear
BSDE system

dvi = (57,400 Y! + EN0,0B) Yi1} + 33y 0B V"
+81b/(8)1E, (t)) dt+ Y2, Viaw], (44)
Yi=0

where 8;¢(t) := (0L, e, 677, Z:) — br. Then

. 2 t m
sup E |Y,_!\2+Z/ |VI|2ds| < Cé
0<t<T = 0
. (45)
sup E |>‘<:"‘_>“<{_y;|2+2/ 1250 — 25— vi|Rds| < cé.
0<t<T =1 0

30/39



Mean-field type games with BSDE dynamics: SMP

Using step 4,

E[ht — hy] = [Z ih Y4 + E[(9,h0)" Y3]| + o(e). (46)

5. Find the duality relation by introducing the adjoint process:
Let assumptions 1-3 hold and let p¥ be given by

{dplf - {axj Al + E[*(0, /93)]} dt — 2 9 ALdWk. @)

Py’ = 0,hg + E[*(8,,h5)]

where A := B}p}l + B?pt12 - ﬁl is player 1's Hamiltonian, evaluated at the
equilibrium. Then the following duality relation holds
2 . .
|3
j=1

T 2
=—E /O ;py&bj(t)lge(t)—i-ytj (0081 + E[ (0,F)) dt}
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Mean-field type games with BSDE dynamics: SMP

Use step 5 to conclude that
2

e it - ] - £|>- o

j=1

+ o(e). (48)

6. Approximate the running cost difference, and get
JN @t i?) — JN(at, i?) = —E [/T 61H1(t)156(t)dt} +o(e).  (49)
0
Step 1-6 has lead us from functional minimization to pointwise minimization!!
Step 1-6 can be done for a spike pertubation of player 2's control. The last

relationship between best reply difference and Hamiltonian difference yields
necessary and sufficient conditions for Nash equilibria.

L Alexander Aurell. “Mean-Field Type Games between Two Players Driven by Backward Stochastic Differential Equations”. In: (2018).
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Mean-field type games with BSDE dynamics: SMP

Suppose that (X, [2",2/%]), i = 1,2, is an equilibrium for the MFTG
and that p?, i,j = 1,2, solves the adjoint equations. Then, for i = 1,2,

o iAo A= 5 il 2
i, = maJ? H'(0:, 2,0 ", Ze, pi7, pe°), a.s., a.e.t (50)
ae

Sufficient conditions

Suppose o' satisfies (50). Suppose furthermore that
O, ity b2, 12, 0P) s HE i T u u™ 2, p?)  (51)
is concave a.s. and
(xl, X3, muz) — h"(x"7 whox7 u_i) (52)

is convex a.s. Then !, i? constitute a Nash equilibrium control.
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Revisiting the LQ example

Our LQ example satisfies the sufficient conditions. Pointwise minimization of
the Hamiltonian yields
L a s
g = 2pl. (53)
I
Steps 1-6 can be carried out for the central planner problem, though the first
variation and adjoint processes and the Hamiltonian will have different forms.

The central planner’s optimal control for player i is
o ar
0y = = p;. (54)

ri

Both (53) and (54) can be found explicitly (up to a set of Ricatti ODEs).
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Revisiting the LQ example

Improvement on a societal level can be quantified by the price of anarchy®

PoA := sup “1)/ min (u?,u.Z). (55)

(01,a2) Nash uleu’,i=1

X% a c11 c12 n P1 vy X[}

-2 1 0.3 0 1 1 1 N(0,0.1)
2 2

XT az @1 €22 rn P2 V2 Xy

2 1 0 03 1 1 1 N(0,0.1)

Figure: Variation of py, weight for mean-field cost, in [0.2,2].

LChristos Papadimitriou. “Algorithms, games, and the internet”. In: Proceedings of the thirty-third annual ACM symposium on
Theory of computing. ACM. 2001, pp. 749-753. 35/39



Revisiting the LQ example

Figure: Variation of r», weight on control, in [0.2,4].
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Revisiting the LQ example

1 1
XT a C11 C12 n P1 Vi Xg

1.09

1.085 b

1.08 - 1

0A

o
1.075 b

1.07 i

1.065 I I I I I I I

Figure: Variation of v1, weight on initial cost, in [0.2,4].
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Revisiting the LQ example

XT a C11 C12 n P1 vy X

X1 a 1 C22 rn P2 1 2] X

PoA

Figure: Variation of time horizon T in [0.2,2].
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Conclusion

» Many variations on control problems involving control-dependent marginal
distribution out there.

» Model suggested for certain pedestrian movement.

» Mean-field type game of players evolving according to BSDEs.

Thank you!
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