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The topic of my PhD project is mean-field type control and games
in crowd dynamics.

This presentation is focused on congestion aversion in pedestrian
crowds.
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Introduction

Pedestrian crowd modeling

Typical pedestrian behavior [Cristiani, Piccoli, and Tosin 2010]:

Will to reach specific targets.
Repulsion from other individuals.
Deterministic if the crowd is sparse, partially random if the crowd
is dense.

Classical models for interacting particle systems yield this behavior,
but the dynamics are ruled by inertia, i.e. a priori fixed. Real
pedestrians are “smart” and follow decision-based dynamics.
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Introduction

Pedestrian crowd modeling

Particle system
I Robust - interaction only through collisions
I Blindness - dynamics ruled by inertia
I Local - interaction is pointwise
I Isotropy - all directions equally influential

“Smart” agent
I Fragile - avoidance of collisions and obstacles
I Vision - dynamics ruled at least partially by decision
I Nonlocal - interaction at a distance
I Anisotropy - some directions more influential than others

Comparison by [Cristiani, Piccoli, and Tosin 2010].
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Introduction

Pedestrian crowd modeling

Perspectives on pedestrian crowd dynamics:

Microscopic
I the social force model [Helbing and Molnar 1995].

Macroscopic
I fluid-dynamic model [Hughes 2003].

Multiscale,
I embedding of micro and macro scales [Cristiani, Piccoli, and Tosin

2010].
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Introduction

Pedestrian crowd modeling: the mean-field approach

The dynamics of a pedestrians is given by
I change in position = velocity + noise

The pedestrian controls it’s velocity.

The pedestrian controls it’s velocity rationally, it minimizes
I expected cost =

E
[∫ T

0 energy use(t) + congestion(t) dt + deviation from final target
]

To evaluate the congestion, the pedestrian knows and anticipates
other pedestrians through the distribution of the crowd.

Many possible extensions:
controlled noise, multiple interacting crowds, fast exit times,
interaction with environment.

A. Aurell Mean-field modeling of crowd dynamics StoUpp 2017



Introduction

Pedestrian crowd modeling: the mean-field approach

The dynamics of a pedestrians is given by
I change in position = velocity + noise

The pedestrian controls it’s velocity.

The pedestrian controls it’s velocity rationally, it minimizes
I expected cost =

E
[∫ T

0 energy use(t) + congestion(t) dt + deviation from final target
]

To evaluate the congestion, the pedestrian knows and anticipates
other pedestrians through the distribution of the crowd.

Many possible extensions:
controlled noise, multiple interacting crowds, fast exit times,
interaction with environment.

A. Aurell Mean-field modeling of crowd dynamics StoUpp 2017



Introduction

Pedestrian crowd modeling: the mean-field approach

The dynamics of a pedestrians is given by
I change in position = velocity + noise

The pedestrian controls it’s velocity.

The pedestrian controls it’s velocity rationally, it minimizes
I expected cost =

E
[∫ T

0 energy use(t) + congestion(t) dt + deviation from final target
]

To evaluate the congestion, the pedestrian knows and anticipates
other pedestrians through the distribution of the crowd.

Many possible extensions:
controlled noise, multiple interacting crowds, fast exit times,
interaction with environment.

A. Aurell Mean-field modeling of crowd dynamics StoUpp 2017



Introduction

Pedestrian crowd modeling: the mean-field approach

The dynamics of a pedestrians is given by
I change in position = velocity + noise

The pedestrian controls it’s velocity.

The pedestrian controls it’s velocity rationally, it minimizes
I expected cost =

E
[∫ T

0 energy use(t) + congestion(t) dt + deviation from final target
]

To evaluate the congestion, the pedestrian knows and anticipates
other pedestrians through the distribution of the crowd.

Many possible extensions:
controlled noise, multiple interacting crowds, fast exit times,
interaction with environment.

A. Aurell Mean-field modeling of crowd dynamics StoUpp 2017



Introduction

Pedestrian crowd modeling: the mean-field approach

The congestion is an aggregate of distances to other pedestrians
I lots of pedestrians in my neighborhood - huge congestion

A pedestrian, at position Xt , knows and anticipates other
pedestrians through the empirical measure of the crowd

I congestion(t) =

∫
Rd

φ(Xt − y)︸ ︷︷ ︸
localizing function

µN
t (dy)︸ ︷︷ ︸

empirical measure

The mean-field heuristic: as N →∞ the empirical measure
converges to a probability law with which all pedestrians interact.
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Non-local congestion project

Research question

The mean-field approach introduced in [Lachapelle and Wolfram
2011]:

min
a

∫
Rd

∫ T

0

1
2
|a(t , x)|2m(t , x) + m2(t , x)dt + Ψ(x)m(T , x)dx

s.t.
∂m
∂t

=
σ2

2
∆m −∇ · (am), m(0, x) = m0(x),

where m0 is a probability density function.

We wanted to investigate...
What is the probabilistic interpretation of the model?
Especially, what is the interpretation of the term m2?
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Non-local congestion project

The interpretation: local congestion penalty

Consider a crowd of N pedestrians,
min

ai
E

[∫ T

0

1
2
|ai(t ,X i

t )|2 +

∫
Rd
φr (X i

t − y)µN
t (dy)dt + Ψ(X i

T )

]
,

s.t. dX i
t = ai

t (t ,X
i
t )dt + σdW i

t , X i
0 = ξi ,

where φr is a (smoothed and normalized) indicator function on Br (0).

Under an anonymity assumption, taking the limit N →∞ gives a
mean-field approximation.
Then taking the limit r → 0 we retrieve the model of [Lachapelle
and Wolfram 2011].
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Non-local congestion project

Results

In [Aurell and Djehiche 2017 (preprint)] we extend the model of
[Lachapelle and Wolfram 2011].

Under the assumption of anonymous pedestrians, it contains
A probabilistic interpretation of non-local congestion
Pontryagin type maximum principle that characterizes the optimal
control for the mean-field approximation of

I a crowd controlled by a central planner
I a game between arbitrarily (but finitely) such crowds
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Simulation
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Simulation

Local vs. non-local congestion avoidance

Consider the following two crowd models:


min
a

∫
T

∫ T

0

(
a2(t, x)

2
+ C

∫
T
φr (x − y)m(t, y)dy

)
m(t, x)dt + Ψ(x)m(T , x)dx,

s.t. ṁ(t, x) =
1

2
m′′(t, x) − (a(t, x)m(t, x))′,

m(0, x) = m0(x).

(Non-local)



min
a

∫
T

∫ T

0

(
a2(t, x)

2
+ Cm(t, x)

)
m(t, x)dt + Ψ(x)m(T , x)dx,

s.t. ṁ(t, x) =
1

2
m′′(t, x) − (a(t, x)m(t, x))′,

m(0, x) = m0(x).

(Local)

For each of them, the maximum principle gives a system of PDEs that
characterize the optimal feedback control.
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Simulation

Local vs. non-local congestion avoidance
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Simulation

Local vs. non-local congestion avoidance
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Simulation
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Simulation
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Lachapelle, Aimé and Marie-Therese Wolfram (2011). “On a mean
field game approach modeling congestion and aversion in
pedestrian crowds”. In: Transportation research part B:
methodological 45.10, pp. 1572–1589.

Thank you!
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