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In the absence of a vaccine, how to incentivize the individuals of society to
make the right effort in the fight against an epidemic?

A policy maker's problem: give incentives and penalties to the population that
1. the populations accepts and follows

2. yields a behavior that " controls” the epidemic

How can we encourage risk-averse behavior and reward it optimally?
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- How the disease spreads depends on the agents’ efforts to slow spread.
- The agents are not cooperating! They are playing a mean field game.

- Principal optimizes a contract given knowledge of the agents' response.



Introduction 2/2

This talk is based on the approach explored in ”Optimal incentives to mitigate
epidemics: A Stackelberg mean field game approach” A., Carmona, Dayanikli,
Lauriére, arXiv 2020.

- The society consists of one principal and a large population of agents.
- How the disease spreads depends on the agents’ efforts to slow spread.

- The agents are not cooperating! They are playing a mean field game.
- Principal optimizes a contract given knowledge of the agents' response.

The principal and the population play a Stackelberg game.

Incentives: (X, &) —————— Mean field game:inf o, J*%(a; p)

Principal Agent population

Optimization: inf(x ¢) J(X, &; @(N&)) <—— Mean field equilibrium: &9
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Epidemic modelling with the SIR model

@ BS(1)I(t) @ i @

Individuals are categorized either as " Susceptible”, " Infected” or " Removed”.

The system of equation that describes the evolution of the epidemic:
S(t) = —BS(1)I(t), S(0)>0
i(t) = BS()I(t) = 41(), 1(0) >0
R(t) =~I(t), R(0)>0
S5(0) + 1(0) + R(0) =1,

Many, many variations!
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The epidemic’s dynamics is described by two parameters: S and ~.
» Recovery rate -, the reciprocal average infectious time.

» Transmission rate S.
What is a reasonable model for agent control of the transmission rate?

- In a meeting, does the risk of infection depend on all the meeting parties
effort to reduce the transmission rate? Linearly or non-linearly?

- Should effort to reduce transmission rate be universal or state-dependent?
Lock down only for the sick or for all?

We argue that 3, if controlled, can depend on the action of many agents...
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Consider N agents. Agent i € {1,..., N} has state X{ € {S,/, R} at time t.
» Meetings in the population occur pairwise and at random with rate (.
» If a susceptible agent meets an infected agent, she is infected.

» The recovery rate is 7.
The population of agents is described by an interacting system of (continuous

time) exchangeable Markov chains with transition rate matrix

—Bp (1) Bpi(1) 0

Q(pY) = 0 -y v
0 0 0

where pl(1) is the proportion of the population that is infected at time t,

pl = (pY(S), P (1), PY(R)) := (,b Z 1f(X{)>

ic{S,I,R}
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What if the agents can take precautions so that a meeting does not
automatically lead to infection?

» The probability of infection is decreased by the action/effort of two agents
that meet in a multiplicative way.

The agents control their " contact factor”.

With contact factor control, agent j's transition rate from S to /:
L
j k k
ﬁajtﬁ ; o2 ]lI(Xt—)

> equals the SIR rate Spl(1) if od=1,j=1,...,N.

Symmetric, weak interaction ... MFG?
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Idea from statistical physics:
» N players in a game
» Interactions between players’ states

» in the coefficients of the state dynamics
» in the cost functions

» exclusively through the empirical distribution
L
N
Y > Oxi
j=1

Consequences:
» Strong symmetry among the players

» Each player can hardly influence the system when N is large.
Mean field game (MFG): the limit game as N — oo
(i) & = arginf J(o; o), (i) fi = distribution of X®

Lasry-Lions (2006), Huang-Malhamé-Caines (2006)
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We anticipate that, for very large N, we can approximate the game with
contact factor control with an extended finite-state MFG.
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N
i1
5ajzﬁ ;af]l/(th_)

We anticipate that, for very large N, we can approximate the game with
contact factor control with an extended finite-state MFG.

Transition rate matrix

_ﬂat fA apt(davl) ﬂat fA apt(da,l) 0
Q(t.0.p) = 0 A
0 0

where p; is a joint state-and-control distribution.

Gomes et al (2010, 2013), Kolokoltsov (2012), Carmona-Wang (2016, 2018),
Cecchin-Fischer (2018), Bayraktar-Cohen (2018), Choutri et a/ (2018, 2019).
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» extended mean field interaction, i.e., interaction through the joint
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for the purpose of modeling decision making during an epidemic.
Elie et al (2020), Hubert et al (2020), Charpentier et al (2020), Cho (2020)
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Motivated by the SIR example, we will consider a MFG with:
> finite state space

» extended mean field interaction, i.e., interaction through the joint
state-control distribution p

for the purpose of modeling decision making during an epidemic.
Elie et al (2020), Hubert et al (2020), Charpentier et al (2020), Cho (2020)

Incentives: (X, &) ————— Mean field game:inf o, J*%(a; p)

Principal Agent population

But first, some notation ...
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Setup

v

Sample space 2 cadlag functions w : [0, T] — E := {e1,...,em}

» Canonical process X : X¢(w) = w(t).

» Filtration F natural filtration generated by X and F := Fr.

> Basic transition rate matrix Q°: rate from ¢ to ej equal to 1 if
(i,j) € G C {1,...,m}? otherwise zero.

> Basic probability space (2, F, 7, P) such that

> PoX; ! =p® € P(E)
» X Markov chain with transition rate matrix Q°

» Under P X has the representation

t
Xe = Xo + / X Q%ds + M,
0

(1)
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Controlled probability space

>
>
>

Control processes A A-valued F-predictable processes and A := [0, 1].
Action-state laws R := P(A x E) Borel probability measures on A x E.
Measure flows M(R) and M(P(E)) measurable mappings from [0, T] to
R and P(E), respectively.

Metrics: A Euclidean metric, E bounded discrete metric, A x E 1-product
metric, P(E) Euclidean metric (on the simplex), R 1-Wasserstein metric
Wk.
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Controlled probability space

>
>
>

Control processes A A-valued F-predictable processes and A := [0, 1].
Action-state laws R := P(A x E) Borel probability measures on A x E.

Measure flows M(R) and M(P(E)) measurable mappings from [0, T] to
R and P(E), respectively.

Metrics: A Euclidean metric, E bounded discrete metric, A x E 1-product
metric, P(E) Euclidean metric (on the simplex), R 1-Wasserstein metric
Wk.

Controlled transition rate matrix Q : [0, T] x A x R — R™*" bounded,
measurable function such that Q(t,«, p) is a Q-matrix.

For (e, p) € A x M(R) the probability measure Q*'* on (Q, F) is given
by dQ*? = ErdP on F where

t
&=1+ [ X (Qsia0p) - Q°) v dM.,
0

e := diag(Q°X:—) — Q°diag(X:—) — diag(X:—)Q°

(2)
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Controlled probability space

>
>
>

Control processes A A-valued F-predictable processes and A := [0, 1].
Action-state laws R := P(A x E) Borel probability measures on A x E.

Measure flows M(R) and M(P(E)) measurable mappings from [0, T] to
R and P(E), respectively.

Metrics: A Euclidean metric, E bounded discrete metric, A x E 1-product
metric, P(E) Euclidean metric (on the simplex), R 1-Wasserstein metric
Wk.

Controlled transition rate matrix Q : [0, T] x A x R — R™*" bounded,
measurable function such that Q(t,«, p) is a Q-matrix.

For (e, p) € A x M(R) the probability measure Q*'* on (Q, F) is given
by dQ*? = ErdP on F where

t
&=1+ [ X (Qsia0p) - Q°) v dM.,
0

e := diag(Q°X:—) — Q°diag(X:—) — diag(X:—)Q°

(2)

Under Q*?, X is a Markov chain with transition rate matrix Q(t, a, pt)
at time t.
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The agents’ problem: find the mean-field Nash equilibrium.

The cost for a € A is

]
PéGai )= B | [ X e - U(6)|.

0
where
N 8) principal’s policy choice, the contract
f:[0,T]x ExXAXR—R running cost, depends on A
U:R—R utility of a terminal payment
p = (pt)icp, 1) € M(R) joint state-control distribution in the population

Q>P € P(Q,F) under which X; has rate matrix Q(t, ¢, pt)
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The agents’ problem: find the mean-field Nash equilibrium.

The cost for a € A is

]
PéGai )= B | [ X e - U(6)|.

0
where
N 8) principal’s policy choice, the contract
f:[0,T]x ExXAXR—R running cost, depends on A
U:R—R utility of a terminal payment
p = (pt)icp, 1) € M(R) joint state-control distribution in the population
QP e P(Q,F) under which X; has rate matrix Q(t, ¢, pt)

Definition

If the pair (&, p) € A x M(R) satisfies
(i) & = arginfaea JM (v, P);
(i) Vt€ [0, T] : pe = QP o (&, Xe) 7,

then (&, p) is a mean-field Nash equilibrium given the contract (X, §).



Characterizing mean-field Nash equilibria 1/3

Incentives: (X, €) Mean field game:inf o J™(a; p)

Principal Agent population

Mean field equilibrium: &8

N (X, &) := the set of mean field Nash equilibria given the contract (X, §).

A forward-backward SDE (FBSDE) helps us solving for A'(X, €)...
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Under suitable assumptions (&, ) € N'(X, &) if (Y, Z, &, p,Q) solves ! the

FBSDE
T N T

Y= U@+ [ AGXo Zupds— [ ziam.,
. t t

& = 1+/ S X (Q(s, &, Ps) — Q°) i d M., (3)
0

o A _ d o A N

pr=Qo (&, Xt) ! ) Tg =&7, & =a(t,Xe—, Zt, pr),

where H is the minimized Hamiltonian and M is the canonical process’
compensating martingale (under P):

> H:(t,x,z,a,p)— x* (Q(t,a,p) — QO) z+ f(t,x,, p; At)
> X = Xo + fot Xs*, QOdS + M

'The tuple (Y, Z, &, p,Q) solves 3) if Y € H?, Z € HY, aa €A, pE M(R), Qisa
probability measure on (2, F) and (3) is satisfied P — a.s. for all t € [0, T].
H? cadlag, real-valued, F-adapted Y: E[[] YZdt] < +oo
H2 left cont., R™-valued, F-adapted Z: IE[fOT HZHit_ dt] < +o0

”Z”it, =z" Yz, z € R
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Hypothesis A
» The transition rates are bounded and Lipschitz continuous in control and

law
» The running cost is Lipschitz continuous in control and law
» The Hamiltonian admits a unique minimizer which is

» feedback in (t, z, p)
» measurable
» Lipschitz continuous in z

Proposition
Assume that Hypothesis A holds true and (X, &) fixed and admissible.

» If the FBSDE admits a solution (Y, Z, a, p,Q), then (o, p) € N(X\, ).
> If (&, p) € N(XE), then the FBSDE admits a solution (Y, Z, c, p, Q)
such that o = &, dP ® dt-a.s., and p: = p:, dt-a.e.

Proof.
Along the lines of Carmona-Wang (2018).



Stackelberg game for epidemics with contract factor control 1/2

Incentives: (X,§) ——————= Mean field game:inf o, J™9(a; p)

Agent population

Optimization: inf(x,¢) J(X, & &™) <—— Mean field equilibrium: &*¢)
What is a Stackelberg game? Generically:
» 2 players: "leader” (principal) and "follower” (Mean field game)
» The leader moves first, then the follower moves
» The follower optimizes her objective function (finds the equilibrium)
knowing the leaders move (the policy/incentive structure)
» The leader optimizes her objective function by anticipating the optimal
(equilibrium) response from the follower
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Definition
A policy (X, €) is admissible if X € A 2, € is F-measurable, and A'(X,€) is a
singleton. We denote the set of admissible policies by C.

2A: the set of measurable R7-valued functions with domain [0, T]
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Definition
A policy (X, €) is admissible if A € A 2, € is F-measurable, and N'(X,€) is a
singleton. We denote the set of admissible policies by C.

The principal’s cost for policy (X, &) € C is

€ =BT [ / " (et AME(A) + () de + (AT (A.) +¢
0

If the population’s equilibrium cost is too high, they reject the policy!
» Rejection whenever cost exceeds the reservation threshold x € R
» The principal disregards policies that will be rejected
» The principal’s optimization problem is

V(k) = |nfec( )ien,i'(A,g)J()\’ €).
P (ip)<n

Holmstrém-Milgrom (1987), Sannikov (2008, 2013), Djehiche-Helgesson (2014),
Cvitani¢ et al (2018), Carmona-Wang (2018), Elie et al (2019)

2A: the set of measurable RT-valued functions with domain [0, T]



Numerical approach to the Stackelberg game 1/9

How can we treat the Stackelberg game problem numerically?

Rewriting Discretization — > Parameterization

» Reposing the FBSDE as a control problem. "Sannikov's trick”.
» Time-discretization and Monte Carlo-approximation.

» Parametrizing the optimization variables. Neural networks.
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Rewriting — Discretization —_— Parameterization

Given Z € H%, X € A, and real-valued Fyo-measurable Yy, consider under P

t t
yZAYo — yo_/ A(s, Xs—, Zs, AZ"Y")ds+/ ZXdMs,
0 0

t
E=1 +/ E XI ( (5,650 pZ2Y0) Q°) S d M,
0

1 Z2,Y
pZAY0 — QZAYo (&tz,x,yo Xt) dQZ Yo .
- ) - ’

Pt I d]P

~AZ 2N Yy ~AZ Y
Qi 0 Oé(t Xt ,Zt, 0)

Same equations as the FBSDE, except that the dynamic of Y is written in the
forward direction of time.
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Hypotesis B
» The function U : R — R is invertible.
> «, fy are measurable on [0, T] x R".

Consider the following optimal control problem

- T
V(k):= inf  inf E€7 / (Co(tyﬁtz’)\’yo)+f0(t7)\t))dt
YoE[Yo]<r ze#} 0
AEA

+ G (PFM) U (YA } ,

Proposition
If Hypothesis A and B then V (k) = V(k).

Proof.
Along the lines of Carmona-Wang (2018). O

» The backward equation has been "replaced” by an optimization problem.
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Final polishing: express YZ Y0 with respect to MZ>Ye:

t t
YFAY = v, f/ F(s, Xoy GENT0, 200N, )ds+/ ZXdMENT,
0 0

&-1—1—/5 X_(Q(s “Z>‘Y°7ﬁZ)‘Y°)—QO>1/;5+dM57

1 dQZ,)\,YO
AZXN Yy _ nZ:\ Y ~Z,\,Yp _
Pt - Q © (at 7Xf ) dP - gTa

&tz’A’YO = (t Xt 7Zt7 peN YO)

(4)

where the process MZ>*Y0 is defined by:
t
MtZ,A,Yg = M, _/ (Q(s ~Z.X\, Y ﬁzx Yo) . Qo) ds,
0
is a Qz’)"y"—martingale. Furthermore, under Qz’)"y",

Xt XO+/ XS_Q(S AZ)\YO AZAYO)dSJrMZAYO (5)
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Rewriting — > Discretization — Parameterization

Recall: the tuple (Y, Z, &, p, Q) solves the FBSDE.

Hypothesis C

» & depends only on the state marginal of the joint distribution:
F&:[0,T] x ExR™x P(E) — R such that

&t = é(t, Xt—7 Zt, ﬁt)
where pe()) = pe(A,-).
Hypothesis C is weaker than

assuming that & (the function) is independent of the first marginal of
(cf. Carmona-Wang (2018), Lauriere-Tangpi (2019, 2020))
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Input: Transition rate matrix function Q; number of particles N; time horizon
T initial distribution po; control functions A, yo, z
Output: Sampled trajectories for (4)—(5) (rewritten FBSDE)

1: Let n =0, tp = 0; pick X§ ~ p° i.i.d and set Y§ = yo(X{), i € [N]

2: while t, < T do

3 Set Zj = z(tn, X! ), i, = 3(tn, X.,, Zi , pr,), i € [N]

4 Letphy = 3300, O(x; ,ai y and Ph =5 i Oxi.

5.  Pick (T"’e)eeE,,-GHN]] i.i.d. with exponential distribution of parameter 1
6:  Set the holding times: 7/¢ = T've/QXgn,e(tn,a;n,ﬁﬁ), i€[N],ecE

7. Let €l =eck 7""?9 and 7. = 7% = minece 7%, i € [N]
8:  Let iy =i 7+ be the first particle to jump

9. Let At =7 set Xt":+m = el and for every i # i, set Xtin+At = Xtin
10 Let AM] =X/ .a, — Xi — (X0)" Q(tn, 0, pE)AL, i € [N]

11: Let Vi ae= Vi — F(t, X0, ol p i AN(ta)) At + (Z) AM], i € [N]
122 Setn=n+1and t, = t,—1 + At

13: end while

14: Set Not = Ny by, = T, (Xi

tngor ?

Yi

i _ i i i
) ° ) tgor ? Zt"tot) - (Xt"ror—l’ tngor—17 t"tot—l)
1 1 1
15: return (X;, Y;, Z: )n=o,...,neoe,ic[N] @Nd (tn)n=0, .. 00



Numerical approach to the Stackelberg game 7/9

Rewriting s Discretization - s Parameterization

» Parameterize (Z, A, Yo)
9, [0, T] x E—=R™, X, : [0, T] > RT, y0,: E—R

» Feedforward fully connected neural networks

» The principal’s cost for (61, 62, 03):

") = { > (e (8 BE") + foltn Aaa(82))) (01 — )

w6 (o) L ()|

where for j =1,..., M, (Yj’i’e)ieﬂ,\,ﬂ and p"M? are constructed using
(Z> )\,YO) = (2917 )‘917.)/0793)'



Numerical approach to the Stackelberg game 8/9

Final goal: minimize J¥ over NN parameters 6 = (61,62, 63).

Minimization by Adaptive Moment Estimation algorithm:

> second algorithm of Carmona-Lauriére (2019)
» adapted to

> the finite state case
> the Stackelberg setting

(i v i )
For a sample S = (X, Y., Zi, )n—o, ..., neor,ic[N]:

Neot —1

180) = > (o (t0B0) + fotn, Aaa(t0)) ) (i1 — t0)

n=0
# G () + y 20 ()

N _ 15\ WN s
where By = 5 > i, 5Xé,,'

(6)



Numerical approach to the Stackelberg game 9/9

Input: Initial parameter 6y; number of iterations K; sequence (8k)k=o,..., k—1 of
learning rates; transition rate matrix function Q; number of particles N; time
horizon T; initial distribution pg

Output: Approximation of 8* minimizing JV

1: for k=0,1,2,...,K —1do

2. Sample S = (X{, Y{"7Z{n);i[£,7u"ntot and (tn)n=o0,...,n; With controls
(z, A\, 0) = (Z@k70,/\9k)1,y079k12) and parameters: Q, N, T, po

3. Compute the gradient VJ¥(6) of J¥(6x) defined by (6)

4 Set Ori1 = Ok — Bk VIY(6k)

5. end for

6: return Og

Rewriting > Discretization - s Parameterization



Example: SIR MFG and an inactive principal 1/6

P YANO A 1o,
f(t,x,a,p; A) = > ()\ a) ]ls(x)—|—<2 ()\ a) +ca ) 1i(x)

+ % (/\(R) - a)2 1r(x),

(7)

» Deviation from recommended contact factor A

» Infection cost



Example: SIR MFG and an inactive principal 2/6
Hypothesis D (to have semi-explicit solutions!)

» There exists a unique solution ()A’, 2, a, p, @) to the FBSDE.

> Evaluated at the equilibrium, &, f, and Q are functions of the

state-marginal law only: 3, f, Q.

» The function 3 is Lischitz continuous in z and p (the state marginal).
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Hypothesis D (to have semi-explicit solutions!)

» There exists a unique solution ()A’, 2, a, p, @) to the FBSDE.

> Evaluated at the equilibrium, &, f, and Q are functions of the

state-marginal law only: 3, f, Q.

» The function 3 is Lischitz continuous in z and p (the state marginal).

Definition

Let (o, p) € A x M(P(E)) and denote by Q*'? € P(2) the measure such that
the coordinate process X;: has transition rate matrix (f)(t“7 at, pr) under Q*P.
Assume that (&, p) € A x M(P(E)) satisfies

(i) &= arginfacs EO™" [fOT F(t, Xe, o, Be)dt — U(€),

(i) Vt € [0, T],i € {1,...,m}: p:(i) = Q¥P (X, = ).
Then (&, p) is called a non-extended mean field Nash equilibrium.

Proposition

Assume Hypothesis A=D to be true. Denote the tuple of Hypothesis D by
(V, 2,&,p, Q). The pair (&, p) is a mean-field Nash equilibrium. Let p; be
the E-marginal of p: and let (&, p) be a non-extended mean field Nash
equilibrium. Then p; = p; for dt-a.e. t € [0, T| and &¢ = & dP & dt-a.e..



Example: SIR MFG and an inactive principal 3/6

The regulator declares a fixed policy (X, &)

Test case Contact factor ¢ )\55) )\E’) )\ER)
Free spread Constant 0 1 1 1
No lockdown MF Nash eq. 0 1 1 1
Late lockdown MF Nash eq. 0 1—-031¢s40 0.9—0.314540 1
Early lockdown | MF Nash eq. 0 1-031¢<10 0.9-031t<10 1

Parameter choice

Parameter T p0 Cx c| B8 vy n

Value in tests 50 (0.9,0.1,0) 10 1 025 01 O




Example: SIR MFG and an inactive principal 4/6
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Figure: Semi-explicit (ODE) solution in the four test cases



Example:

SIR MFG and an inactive principal 5/6
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Figure: Late lockdown, ODE solution. Evolution of the population state distribution
(left), evolution of the controls (middle), convergence of the solver (right).
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Figure: Late lockdown, numerical solution. Evolution of the population state
distribution (left), evolution of the controls (middle), convergence of the loss value

(right).
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Example: SIR MFG and an inactive principal 6/6
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Figure: Early lockdown, ODE solution. Evolution of the population state distribution
(left), evolution of the controls (middle), convergence of the solver (right).

Davs
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iterations

Figure: Early lockdown, numerical solution. Evolution of the population state
distribution (left), evolution of the controls (middle), convergence of the loss value

(right).



Example: SIR Stackelberg game 1/2

We now include the regulator’s optimization to the previous example, making
the problem a Stackelberg game.

More specifically, we set Co(p) = 0 and

N2
o(tp) = pIf. BN = Y L (0-30) (g
ie{S,I,R}
for constant /_\,B € RY and ¢ > 0.
> Deviation from some incentive levels X
» Infection cost

For this case we can derive a semi-explicit solution.

T PP c\ ¢ Cnf B X B Y n K
30 (0.9,01,00 10 05 1 (0.2,1,0) (1,0.7,0) 025 01 0




Example: SIR Stackelberg game 2/2

5 0 15 20 25 3
Davs

— supdllp® =P+l D=yl
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iterations

Figure: SIR Stackelberg game, ODE solution. Evolution of the population state
distribution (left), evolution of the controls (middle), convergence of the solver (right).
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Figure: SIR Stackelberg, numerical solution. Evolution of the population state
distribution (left), evolution of the controls (middle), convergence of the loss value

(right).



Conclusions

A Stackelberg game to model decision making in an epidemic.

» The model incorporates at the same time a non-cooperative population
and a regulator such as a government

» Evolution of the system described from the point of view of a typical
(infinitesimal) agent
» Numerical method based on neural network approximation and Monte
Carlo simulations to compute the optimal policy
What lies ahead?

» Further work on the FBSDE system to justify assumptions about its
solution

» Generalizing beyond the SIR model is crucial for applications to
epidemiological models. Multiple populations, pharmaceutical
interventions, testing, etc.

» Other ways of modeling incentives

Thank you!



