Optimal incentives to mitigate epidemics: A Stackelberg mean field game approach

Alexander Aurell

ORFE, Princeton University

December 7, 2020

Joint work with René Carmona, Gökçe Dayanikli, and Mathieu Laurière (ORFE)

Introduction 1/2

In the absence of a vaccine, how to incentivize the individuals of society to make the right effort in the fight against an epidemic?

Introduction 1/2

In the absence of a vaccine, how to **incentivize** the individuals of society to make the right effort in the fight against an epidemic?

A policy maker's problem: give incentives and penalties to the population that

- 1. the populations accepts and follows
- 2. yields a behavior that "controls" the epidemic

How can we encourage risk-averse behavior and reward it optimally?

KORKARYKERKER POLO

Introduction 2/2

This talk is based on the approach explored in "Optimal incentives to mitigate epidemics: A Stackelberg mean field game approach" A., Carmona, Dayanikli, Lauriére, arXiv 2020.

- The society consists of one **principal** and a large population of agents.
- How the disease spreads depends on the agents' efforts to slow spread.
- The agents are not cooperating! They are playing a mean field game.
- Principal **optimizes** a contract given knowledge of the agents' response.

KORK ERKER ADAM ADA

Introduction 2/2

This talk is based on the approach explored in "Optimal incentives to mitigate epidemics: A Stackelberg mean field game approach" A., Carmona, Dayanikli, Lauriére, arXiv 2020.

- The society consists of one **principal** and a large population of agents.
- How the disease spreads depends on the agents' efforts to slow spread.
- The agents are not cooperating! They are playing a mean field game.
- Principal **optimizes** a contract given knowledge of the agents' response.

The principal and the population play a **Stackelberg game**.

Incentives:
$$
(\lambda, \xi)
$$
 \longrightarrow Mean field game: inf α $J^{(\lambda, \xi)}(\alpha; \rho)$

Optimization: inf $_{(\boldsymbol{\lambda},\xi)}$ J $(\boldsymbol{\lambda},\xi;\hat{\boldsymbol{\alpha}}^{(\boldsymbol{\lambda},\xi)})$ \ll Mean field equilibrium: $\hat{\alpha}^{(\boldsymbol{\lambda},\xi)}$

Compartmental models of epidemics 1/4

Epidemic modelling with the SIR model

$$
\boxed{S} \xrightarrow{\beta S(t)I(t)} \rightarrow \boxed{I} \xrightarrow{\gamma} R
$$

Individuals are categorized either as "Susceptible", "Infected" or "Removed".

KO K K Ø K K E K K E K V K K K K K K K K K

Compartmental models of epidemics 1/4

Epidemic modelling with the SIR model

$$
S \xrightarrow{\beta S(t)/(t)} \searrow \qquad \qquad \gamma \xrightarrow{\gamma} R
$$

Individuals are categorized either as "Susceptible", "Infected" or "Removed".

The system of equation that describes the evolution of the epidemic:

$$
\begin{cases}\n\dot{S}(t) = -\beta S(t)I(t), & S(0) \ge 0 \\
\dot{I}(t) = \beta S(t)I(t) - \gamma I(t), & I(0) \ge 0 \\
\dot{R}(t) = \gamma I(t), & R(0) \ge 0 \\
S(0) + I(0) + R(0) = 1,\n\end{cases}
$$

Many, many variations!

Compartmental models of epidemics 2/4

The epidemic's dynamics is described by two parameters: β and γ .

- Recovery rate γ , the reciprocal average infectious time.
- **F** Transmission rate β .

What is a reasonable model for agent control of the transmission rate?

Compartmental models of epidemics 2/4

The epidemic's dynamics is described by two parameters: β and γ .

- **IDE** Recovery rate γ , the reciprocal average infectious time.
- **Figure** Transmission rate β .

What is a reasonable model for agent control of the transmission rate?

- In a meeting, does the risk of infection depend on all the meeting parties effort to reduce the transmission rate? Linearly or non-linearly?

Compartmental models of epidemics 2/4

The epidemic's dynamics is described by two parameters: β and γ .

- **IDE Recovery rate** γ , the reciprocal average infectious time.
- **Figure** Transmission rate β .

What is a reasonable model for agent control of the transmission rate?

- In a meeting, does the risk of infection depend on all the meeting parties effort to reduce the transmission rate? Linearly or non-linearly?

- Should effort to reduce transmission rate be universal or state-dependent? Lock down only for the sick or for all?

We argue that β , if controlled, can depend on the action of many agents...

Compartmental models of epidemics 3/4

Consider N agents. Agent $i \in \{1, ..., N\}$ has state $X_t^i \in \{S, I, R\}$ at time t.

 \triangleright Meetings in the population occur pairwise and at random with rate β .

KID KØD KED KED E 1990

Compartmental models of epidemics 3/4

Consider N agents. Agent $i \in \{1, ..., N\}$ has state $X_t^i \in \{S, I, R\}$ at time t.

 \triangleright Meetings in the population occur pairwise and at random with rate β .

 \blacktriangleright If a susceptible agent meets an infected agent, she is infected.

Compartmental models of epidemics 3/4

Consider N agents. Agent $i \in \{1, ..., N\}$ has state $X_t^i \in \{S, I, R\}$ at time t.

- \triangleright Meetings in the population occur pairwise and at random with rate β .
- \blacktriangleright If a susceptible agent meets an infected agent, she is infected.
- \blacktriangleright The recovery rate is γ .

The population of agents is described by an interacting system of (continuous time) exchangeable Markov chains with transition rate matrix

$$
Q(\rho_t^N) = \begin{bmatrix} -\beta \rho_t^N(I) & \beta \rho_t^N(I) & 0\\ 0 & -\gamma & \gamma\\ 0 & 0 & 0 \end{bmatrix}
$$

where $\rho_t^N(I)$ is the **proportion** of the population that is infected at time $t,$

$$
\rho^N_t = (\rho^N_t(\mathcal{S}), \rho^N_t(I), \rho^N_t(R)) := \left(\frac{1}{N} \sum_{j=1}^N \mathbb{1}_i(X^j_t)\right)_{i \in \{\mathcal{S}, I, R\}}
$$

KORK E KERKERKERKOR

Compartmental models of epidemics 4/4

What if the agents can take precautions so that a meeting does not automatically lead to infection?

 \blacktriangleright The probability of infection is decreased by the action/effort of two agents that meet in a multiplicative way.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

The agents control their "contact factor".

Compartmental models of epidemics 4/4

What if the agents can take precautions so that a meeting does not automatically lead to infection?

 \blacktriangleright The probability of infection is decreased by the action/effort of two agents that meet in a multiplicative way.

The agents control their "contact factor".

With contact factor control, agent i 's transition rate from S to I :

$$
\beta \alpha_t^j \frac{1}{N} \sum_{k=1}^N \alpha_t^k \mathbb{1}_I(X_{t-}^k)
$$

KOD KAD KED KED E VOOR

► equals the SIR rate $\beta p_t^N(I)$ if $\alpha_t^j = 1, j = 1, \ldots, N$.

Compartmental models of epidemics 4/4

What if the agents can take precautions so that a meeting does not automatically lead to infection?

 \blacktriangleright The probability of infection is decreased by the action/effort of two agents that meet in a multiplicative way.

The agents control their "contact factor".

With contact factor control, agent j 's transition rate from S to I :

$$
\beta \alpha_t^j \frac{1}{N} \sum_{k=1}^N \alpha_t^k \mathbb{1}_I(X_{t-}^k)
$$

KO K K Ø K K E K K E K V K K K K K K K K K

► equals the SIR rate $\beta p_t^N(I)$ if $\alpha_t^j = 1, j = 1, \ldots, N$.

Symmetric, weak interaction ... MFG?

Mean field games 1/3

Idea from statistical physics:

- \blacktriangleright N players in a game
- \blacktriangleright Interactions between players' states
	- \blacktriangleright in the coefficients of the state dynamics
	- \blacktriangleright in the cost functions
- \blacktriangleright exclusively through the empirical distribution

$$
\mu_t^N = \frac{1}{N} \sum_{j=1}^N \delta_{X_t^j}
$$

Mean field games 1/3

Idea from statistical physics:

- \blacktriangleright N players in a game
- \blacktriangleright Interactions between players' states
	- \blacktriangleright in the coefficients of the state dynamics
	- \blacktriangleright in the cost functions
- \blacktriangleright exclusively through the empirical distribution

$$
\mu_t^N = \frac{1}{N} \sum_{j=1}^N \delta_{X_t^j}
$$

KORK ERKER ADAM ADA

Consequences:

- \triangleright Strong symmetry among the players
- Each player can hardly influence the system when N is large.

Mean field games 1/3

Idea from statistical physics:

- \blacktriangleright N players in a game
- \blacktriangleright Interactions between players' states
	- \blacktriangleright in the coefficients of the state dynamics
	- \blacktriangleright in the cost functions
- \blacktriangleright exclusively through the empirical distribution

$$
\mu_t^N = \frac{1}{N} \sum_{j=1}^N \delta_{X_t^j}
$$

Consequences:

- \triangleright Strong symmetry among the players
- Each player can hardly influence the system when N is large.

Mean field game (MFG): the limit game as $N \to \infty$

(*i*)
$$
\hat{\alpha} = \arg\inf_{\alpha} J(\alpha; \hat{\mu}), \quad (\textit{ii}) \hat{\mu} = \text{distribution of } X^{\hat{\alpha}}
$$

KORKAR KERKER SAGA

Lasry-Lions (2006), Huang-Malhamé-Caines (2006)

Mean field games 2/3

$$
\beta \alpha_t^j \frac{1}{N} \sum_{k=1}^N \alpha_t^k \mathbb{1}_I(X_{t-}^k)
$$

KO K K Ø K K E K K E K V K K K K K K K K K

We anticipate that, for very large N , we can approximate the game with contact factor control with an extended finite-state MFG.

Mean field games 2/3

$$
\beta \alpha_t^j \frac{1}{N} \sum_{k=1}^N \alpha_t^k \mathbb{1}_I(X_{t-}^k)
$$

We anticipate that, for very large N , we can approximate the game with contact factor control with an extended finite-state MFG.

Transition rate matrix

$$
Q(t,\alpha,\rho)=\begin{bmatrix}-\beta\alpha_t\int_Aa\rho_t(da,I)&\beta\alpha_t\int_Aa\rho_t(da,I)&0\\0&-\gamma&\gamma\\\gamma&0&\cdots\end{bmatrix},
$$

KOD KAD KED KED E VOOR

where ρ_t is a joint state-and-control distribution.

Gomes et al (2010, 2013), Kolokoltsov (2012), Carmona-Wang (2016, 2018), Cecchin-Fischer (2018), Bayraktar-Cohen (2018), Choutri et al (2018, 2019).

Mean field games 3/3

Motivated by the SIR example, we will consider a MFG with:

- \blacktriangleright finite state space
- \triangleright extended mean field interaction, i.e., interaction through the joint state-control distribution ρ

for the purpose of modeling decision making during an epidemic.

Elie et al (2020), Hubert et al (2020), Charpentier et al (2020), Cho (2020)

Mean field games 3/3

Motivated by the SIR example, we will consider a MFG with:

- \blacktriangleright finite state space
- \triangleright extended mean field interaction, i.e., interaction through the joint state-control distribution ρ

for the purpose of modeling decision making during an epidemic.

Elie et al (2020), Hubert et al (2020), Charpentier et al (2020), Cho (2020)

KORKARYKERKER POLO

But first, some notation ...

Setup

► Sample space Ω càdlàg functions $ω : [0, T] \rightarrow E := \{e_1, \ldots, e_m\}$

KO K K Ø K K E K K E K V K K K K K K K K K

- **Canonical process** $X : X_t(\omega) = \omega(t)$ **.**
- **Filtration** F natural filtration generated by X and $\mathcal{F} := \mathcal{F}_T$.

Setup

- \triangleright Sample space Ω càdlàg functions $ω : [0, T] \rightarrow E := \{e_1, \ldots, e_m\}$
- **Canonical process** $X : X_t(\omega) = \omega(t)$ **.**
- **Filtration** F natural filtration generated by **X** and $\mathcal{F} := \mathcal{F}_T$.
- Basic transition rate matrix Q^0 : rate from e_i to e_j equal to 1 if $(i, j) \in G \subset \{1, \ldots, m\}^2$, otherwise zero.

Setup

- \triangleright Sample space Ω càdlàg functions $ω : [0, T] \rightarrow E := \{e_1, \ldots, e_m\}$
- **Canonical process** $X : X_t(\omega) = \omega(t)$ **.**
- **Filtration** F natural filtration generated by **X** and $\mathcal{F} := \mathcal{F}_T$.
- Basic transition rate matrix Q^0 : rate from e_i to e_j equal to 1 if $(i, j) \in G \subset \{1, \ldots, m\}^2$, otherwise zero.
- ► Basic probability space $(Ω, ℤ, ℤ)$ such that

$$
\blacktriangleright \ \mathbb{P} \circ X_0^{-1} = \rho^0 \in \mathcal{P}(E)
$$

- ► $\mathbb{P} \circ X_0^{-1} = p^0 \in \mathcal{P}(E)$
► \bm{X} Markov chain with transition rate matrix Q^0
- \blacktriangleright Under $\mathbb P$ X has the representation

$$
X_t = X_0 + \int_0^t X_{s-}^* Q^0 ds + \mathcal{M}_t \tag{1}
$$

KORKAR KERKER SAGA

Controlled probability space

- **Control processes** A A-valued F-predictable processes and $A := [0, 1]$.
- Action-state laws $\mathcal{R} := \mathcal{P}(A \times E)$ Borel probability measures on $A \times E$.
- **Measure flows** $M(\mathcal{R})$ and $M(\mathcal{P}(E))$ measurable mappings from [0, T] to R and $P(E)$, respectively.
- **INEX Metrics:** A Euclidean metric, E bounded discrete metric, $A \times E$ 1-product metric, $\mathcal{P}(E)$ Euclidean metric (on the simplex), \mathcal{R} 1-Wasserstein metric W_R .

Controlled probability space

- **Control processes** A A-valued F-predictable processes and $A := [0, 1]$.
- Action-state laws $\mathcal{R} := \mathcal{P}(A \times E)$ Borel probability measures on $A \times E$.
- **IDED** Measure flows $M(\mathcal{R})$ and $M(\mathcal{P}(E))$ measurable mappings from [0, T] to $\mathcal R$ and $\mathcal P(E)$, respectively.
- **INEX Metrics:** A Euclidean metric, E bounded discrete metric, $A \times E$ 1-product metric, $\mathcal{P}(E)$ Euclidean metric (on the simplex), \mathcal{R} 1-Wasserstein metric W_R .
- ▶ Controlled transition rate matrix $Q : [0, T] \times A \times R \rightarrow \mathbb{R}^{m \times m}$ bounded, measurable function such that $Q(t, \alpha, \rho)$ is a Q-matrix.

Controlled probability space

- **Control processes** A A-valued F-predictable processes and $A := [0, 1]$.
- Action-state laws $\mathcal{R} := \mathcal{P}(A \times E)$ Borel probability measures on $A \times E$.
- **Measure flows** $M(\mathcal{R})$ and $M(\mathcal{P}(E))$ measurable mappings from [0, T] to R and $P(E)$, respectively.
- **INEX Metrics:** A Euclidean metric, E bounded discrete metric, $A \times E$ 1-product metric, $\mathcal{P}(E)$ Euclidean metric (on the simplex), \mathcal{R} 1-Wasserstein metric W_R .
- ▶ Controlled transition rate matrix $Q : [0, T] \times A \times R \rightarrow \mathbb{R}^{m \times m}$ bounded, measurable function such that $Q(t, \alpha, \rho)$ is a Q-matrix.
- For $(\alpha, \rho) \in \mathbb{A} \times M(\mathcal{R})$ the probability measure $\mathbb{Q}^{\alpha, \rho}$ on (Ω, \mathcal{F}) is given by $d\mathbb{Q}^{\alpha,\rho} = \mathcal{E}_T d\mathbb{P}$ on $\mathcal F$ where

$$
\mathcal{E}_t = 1 + \int_0^t \mathcal{E}_{s-} X_{s-}^* \left(Q(s, \alpha_s, \rho_s) - Q^0 \right) \psi_s^+ d\mathcal{M}_s,
$$

$$
\psi_t := \text{diag}(Q^0 X_{t-}) - Q^0 \text{diag}(X_{t-}) - \text{diag}(X_{t-}) Q^0
$$
 (2)

Controlled probability space

- **Control processes** A A-valued F-predictable processes and $A := [0, 1]$.
- Action-state laws $\mathcal{R} := \mathcal{P}(A \times E)$ Borel probability measures on $A \times E$.
- **IDED** Measure flows $M(\mathcal{R})$ and $M(\mathcal{P}(E))$ measurable mappings from [0, T] to $\mathcal R$ and $\mathcal P(E)$, respectively.
- **INEX Metrics:** A Euclidean metric, E bounded discrete metric, $A \times E$ 1-product metric, $\mathcal{P}(E)$ Euclidean metric (on the simplex), \mathcal{R} 1-Wasserstein metric W_R .
- ▶ Controlled transition rate matrix $Q : [0, T] \times A \times R \rightarrow \mathbb{R}^{m \times m}$ bounded, measurable function such that $Q(t, \alpha, \rho)$ is a Q-matrix.
- For $(\alpha, \rho) \in \mathbb{A} \times M(\mathcal{R})$ the probability measure $\mathbb{Q}^{\alpha, \rho}$ on (Ω, \mathcal{F}) is given by $d\mathbb{Q}^{\alpha,\rho} = \mathcal{E}_T d\mathbb{P}$ on $\mathcal F$ where

$$
\mathcal{E}_t = 1 + \int_0^t \mathcal{E}_{s-} X_{s-}^* \left(Q(s, \alpha_s, \rho_s) - Q^0 \right) \psi_s^+ d\mathcal{M}_s,
$$

$$
\psi_t := \text{diag}(Q^0 X_{t-}) - Q^0 \text{diag}(X_{t-}) - \text{diag}(X_{t-}) Q^0
$$
 (2)

KELK KØLK VELKEN EL 1990

► Under $\mathbb{Q}^{\alpha,\rho}$, X is a Markov chain with transition rate matrix $Q(t, \alpha_t, \rho_t)$ at time t.

The agents' problem: find the mean-field Nash equilibrium.

The cost for $\alpha \in \mathbb{A}$ is

$$
J^{\lambda,\xi}(\alpha;\rho):=\mathbb{E}^{\mathbb{Q}^{\alpha,\rho}}\left[\int_0^T f(t,X_t,\alpha_t,\rho_t;\lambda_t)dt-U(\xi)\right],
$$

where

The agents' problem: find the mean-field Nash equilibrium.

The cost for $\alpha \in \mathbb{A}$ is

$$
J^{\lambda,\xi}(\alpha;\rho):=\mathbb{E}^{\mathbb{Q}^{\alpha,\rho}}\left[\int_0^T f(t,X_t,\alpha_t,\rho_t;\lambda_t)dt-U(\xi)\right],
$$

where

Definition

If the pair $(\hat{\alpha}, \hat{\rho}) \in \mathbb{A} \times M(\mathcal{R})$ satisfies (i) $\hat{\alpha} = \arg \inf_{\alpha \in \mathbb{A}} J^{\lambda, \xi}(\alpha, \hat{\rho});$ (ii) $\forall t \in [0, T] : \hat{\rho}_t = \mathbb{Q}^{\hat{\alpha}, \hat{\rho}} \circ (\hat{\alpha}_t, X_t)^{-1},$

then $(\hat{\alpha}, \hat{\rho})$ is a mean-field Nash equilibrium given the contract (λ, ξ) .

KELK KØLK VELKEN EL 1990

Characterizing mean-field Nash equilibria 1/3

 $\mathcal{N}(\lambda,\xi) :=$ the set of mean field Nash equilibria given the contract (λ,ξ) .

KORKARYKERKER POLO

A forward-backward SDE (FBSDE) helps us solving for $\mathcal{N}(\lambda,\xi)$...

Characterizing mean-field Nash equilibria 2/3

Under suitable assumptions $(\hat\alpha,\hat\rho)\in\mathcal N(\bm\lambda,\xi)$ if $(\bm\mathsf{Y},\bm Z,\hat\alpha,\hat\rho,\mathbb Q)$ solves 1 the FBSDE

$$
\begin{cases}\nY_t = U(\xi) + \int_t^T \hat{H}(s, X_{s-}, Z_s, \hat{\rho}_s) ds - \int_t^T Z_s^* d\mathcal{M}_s, \\
\mathcal{E}_t = 1 + \int_0^t \mathcal{E}_{s-} X_{s-}^* \left(Q(s, \hat{\alpha}_s, \hat{\rho}_s) - Q^0 \right) \psi_s^+ d\mathcal{M}_s, \\
\hat{\rho}_t = \mathbb{Q} \circ (\hat{\alpha}_t, X_t)^{-1}, \quad \frac{d\mathbb{Q}}{d\mathbb{P}} = \mathcal{E}_T, \quad \hat{\alpha}_t = \hat{a}(t, X_{t-}, Z_t, \hat{\rho}_t),\n\end{cases}
$$
\n(3)

where \hat{H} is the minimized Hamiltonian and M is the canonical process' compensating martingale (under \mathbb{P}):

► H:
$$
(t, x, z, \alpha, \rho) \mapsto x^* (Q(t, \alpha, \rho) - Q^0) z + f(t, x, \alpha, \rho; \lambda_t)
$$

\n► $X_t = X_0 + \int_0^t X_{s-}^* Q^0 ds + \mathcal{M}_t$

¹The tuple $(Y, Z, \hat{\alpha}, \hat{\rho}, \mathbb{Q})$ solves [\(3\)](#page-33-0) if $Y \in \mathcal{H}^2$, $Z \in \mathcal{H}^2_X$, $\alpha \in \mathbb{A}$, $\rho \in M(\mathcal{R})$, $\mathbb Q$ is a probability measure on (Ω, \mathcal{F}) and (3) is satisfied $\mathbb P - a.s$. for all $t \in [0, T]$. \mathcal{H}^2 càdlàg, real-valued, $\mathbb{F}\text{-adapted}\; \bm{Y}$: $\mathbb{E}[\int_0^{\mathcal{T}} Y_t^2 dt] < +\infty$ \mathcal{H}^2_χ left cont., \mathbb{R}^m -valued, $\mathbb{F}\text{-adapted } \mathcal{Z}$: $\mathbb{E}[\int_0^T \|Z\|_{X_{t-}}^2 dt] < +\infty$ $||z||_{X_{t-}}^2 = z^* \psi_t z, z \in \mathbb{R}^m$

Characterizing mean-field Nash equilibria 3/3

Hypothesis A

- ▶ The transition rates are bounded and Lipschitz continuous in control and law
- \triangleright The running cost is Lipschitz continuous in control and law
- \blacktriangleright The Hamiltonian admits a unique minimizer which is
	- Feedback in (t, z, ρ)
	- \blacktriangleright measurable
	- \blacktriangleright Lipschitz continuous in z

Proposition

Assume that Hypothesis A holds true and (λ, ξ) fixed and admissible.

- If the FBSDE admits a solution $(Y, Z, \alpha, \rho, \mathbb{Q})$, then $(\alpha, \rho) \in \mathcal{N}(\lambda, \xi)$.
- $I \vdash \textit{If } (\hat{\alpha}, \hat{\rho}) \in \mathcal{N}(\lambda, \xi)$, then the FBSDE admits a solution $(Y, Z, \alpha, \rho, \mathbb{Q})$ such that $\alpha = \hat{\alpha}$, $d\mathbb{P} \otimes dt$ -a.s., and $\rho_t = \hat{\rho}_t$, dt-a.e.

П

KORKARYKERKER POLO

Proof.

Along the lines of Carmona-Wang (2018).

Stackelberg game for epidemics with contract factor control 1/2

What is a Stackelberg game? Generically:

- ▶ 2 players: "leader" (principal) and "follower" (Mean field game)
- \blacktriangleright The leader moves first, then the follower moves
- \blacktriangleright The follower optimizes her objective function (finds the equilibrium) knowing the leaders move (the policy/incentive structure)
- \blacktriangleright The leader optimizes her objective function by anticipating the optimal (equilibrium) response from the follower

Definition

A policy $(\bm{\lambda},\xi)$ is admissible if $\bm{\lambda}\in$ Λ 2 , ξ is $\bm{\mathcal{F}}$ -measurable, and $\mathcal{N}(\bm{\lambda},\xi)$ is a singleton. We denote the set of admissible policies by C .

 2 Λ: the set of measurable \mathbb{R}^m_+ -valued functions with domain $[0,\,T]$

Definition

A policy $(\bm{\lambda},\xi)$ is admissible if $\bm{\lambda}\in$ Λ 2 , ξ is $\bm{\mathcal{F}}$ -measurable, and $\mathcal{N}(\bm{\lambda},\xi)$ is a singleton. We denote the set of admissible policies by C .

The principal's cost for policy $(\lambda, \xi) \in C$ is

$$
J(\boldsymbol\lambda,\xi):=\mathbb{E}^{\mathbb{Q}^{\mathcal{N}(\boldsymbol\lambda,\xi)}}\left[\int_0^{\mathcal{T}}\left(c_0(t,\hat\rho_t^{\boldsymbol\lambda,\xi}(A,\cdot))+f_0(t,\lambda_t)\right)dt+C_0(\hat\rho_T^{\boldsymbol\lambda,\xi}(A,\cdot))+\xi\right]
$$

KELK KØLK VELKEN EL 1990

 2 Λ: the set of measurable \mathbb{R}^m_+ -valued functions with domain $[0,\,T]$

Definition

A policy $(\bm{\lambda},\xi)$ is admissible if $\bm{\lambda}\in$ Λ 2 , ξ is $\bm{\mathcal{F}}$ -measurable, and $\mathcal{N}(\bm{\lambda},\xi)$ is a singleton. We denote the set of admissible policies by C .

The principal's cost for policy $(\lambda, \xi) \in C$ is

$$
J(\boldsymbol\lambda,\xi):=\mathbb{E}^{\mathbb{Q}^{\mathcal{N}(\boldsymbol\lambda,\xi)}}\left[\int_0^{\mathcal{T}}\left(c_0(t,\hat\rho^{\boldsymbol\lambda,\xi}_t(A,\cdot))+f_0(t,\lambda_t)\right)dt+C_0(\hat\rho^{\boldsymbol\lambda,\xi}_\mathcal{T}(A,\cdot))+\xi\right]
$$

KORKAR KERKER SAGA

If the population's equilibrium cost is too high, they reject the policy!

 2 Λ: the set of measurable \mathbb{R}^m_+ -valued functions with domain $[0,\,T]$

Definition

A policy $(\bm{\lambda},\xi)$ is admissible if $\bm{\lambda}\in$ Λ 2 , ξ is $\bm{\mathcal{F}}$ -measurable, and $\mathcal{N}(\bm{\lambda},\xi)$ is a singleton. We denote the set of admissible policies by C . The principal's cost for policy $(\lambda, \xi) \in C$ is

$$
J(\boldsymbol\lambda,\xi):=\mathbb{E}^{\mathbb{Q}^{\mathcal{N}(\boldsymbol\lambda,\xi)}}\left[\int_0^{\mathcal{T}}\left(c_0(t,\hat\rho_t^{\boldsymbol\lambda,\xi}(A,\cdot))+f_0(t,\lambda_t)\right)dt+C_0(\hat\rho_T^{\boldsymbol\lambda,\xi}(A,\cdot))+\xi\right]
$$

If the population's equilibrium cost is too high, they reject the policy!

- **►** Rejection whenever cost exceeds the reservation threshold $\kappa \in \mathbb{R}$
- \blacktriangleright The principal disregards policies that will be rejected
- \blacktriangleright The principal's optimization problem is

$$
V(\kappa):=\inf_{\substack{(\boldsymbol{\lambda},\boldsymbol{\xi})\in\mathcal{C} \ (\alpha,\rho)\in\mathcal{N}(\boldsymbol{\lambda},\boldsymbol{\xi}) \\ j^{\boldsymbol{\lambda},\boldsymbol{\xi}}(\alpha;\rho)\leq\kappa }}\frac{J(\boldsymbol{\lambda},\boldsymbol{\xi}).
$$

KID KA KERKER E VOOR

Holmström-Milgrom (1987), Sannikov (2008, 2013), Djehiche-Helgesson (2014), Cvitanić et al (2018), Carmona-Wang (2018), Elie et al (2019)

 2 Λ: the set of measurable \mathbb{R}^m_+ -valued functions with domain $[0,\,T]$

Numerical approach to the Stackelberg game 1/9

How can we treat the Stackelberg game problem numerically?

KORK EXTERNE PROVIDE

- \triangleright Reposing the FBSDE as a control problem. "Sannikov's trick".
- \blacktriangleright Time-discretization and Monte Carlo-approximation.
- \blacktriangleright Parametrizing the optimization variables. Neural networks.

Numerical approach to the Stackelberg game 2/9

Given $\textbf{Z} \in \mathcal{H}_X^2$, $\pmb{\lambda} \in \Lambda$, and real-valued \mathcal{F}_0 -measurable Y_0 , consider under \mathbb{P} :

$$
\begin{cases}\nY_{t}^{Z,\lambda,Y_{0}} = Y_{0} - \int_{0}^{t} \hat{H}(s,X_{s-},Z_{s},\hat{\rho}_{s}^{Z,\lambda,Y_{0}})ds + \int_{0}^{t} Z_{s}^{*} d\mathcal{M}_{s}, \\
\mathcal{E}_{t} = 1 + \int_{0}^{t} \mathcal{E}_{s-}X_{s-}^{*} \left(Q(s,\hat{\alpha}_{s}^{Z,\lambda,Y_{0}},\hat{\rho}_{s}^{Z,\lambda,Y_{0}}) - Q^{0}\right)\psi_{s}^{+} d\mathcal{M}_{s}, \\
\hat{\rho}_{t}^{Z,\lambda,Y_{0}} = \mathbb{Q}^{Z,\lambda,Y_{0}} \circ \left(\hat{\alpha}_{t}^{Z,\lambda,Y_{0}},X_{t}\right)^{-1}, \quad \frac{d\mathbb{Q}^{Z,\lambda,Y_{0}}}{d\mathbb{P}} = \mathcal{E}_{T}, \\
\hat{\alpha}_{t}^{Z,\lambda,Y_{0}} = \hat{\alpha}(t,X_{t-},Z_{t},\hat{\rho}_{t}^{Z,\lambda,Y_{0}}).\n\end{cases}
$$

Same equations as the FBSDE, except that the dynamic of Y is written in the forward direction of time.

KORKARRA ERKER SAGA

Numerical approach to the Stackelberg game 3/9

Hypotesis B

$$
\blacktriangleright
$$
 The function $U : \mathbb{R} \to \mathbb{R}$ is invertible.

• c_0, f_0 are measurable on $[0, T] \times \mathbb{R}^m$.

Consider the following optimal control problem

$$
\widetilde{V}(\kappa) := \inf_{\substack{\gamma_0: \mathbb{E}[Y_0] \leq \kappa \\ \lambda \in \Lambda}} \inf_{\substack{Z \in \mathcal{H}_X^2 \\ \lambda \in \Lambda}} \mathbb{E}^{\mathbb{Q}^{Z,\lambda,\gamma_0}} \Bigg[\int_0^T \Big(c_0 \left(t, \hat{\rho}_t^{Z,\lambda,\gamma_0} \right) + f_0(t,\lambda_t) \Big) dt \\ + C_0 \left(\hat{\rho}_T^{Z,\lambda,\gamma_0} \right) + U^{-1} \left(-Y_T^{Z,\lambda,\gamma_0} \right) \Bigg],
$$

Proposition

If Hypothesis A and B then $\widetilde{V}(\kappa) = V(\kappa)$.

Proof

Along the lines of Carmona-Wang (2018).

 \blacktriangleright The backward equation has been "replaced" by an optimization problem.

KELK KØLK VELKEN EL 1990

Numerical approach to the Stackelberg game 4/9

Final polishing: express Y^{Z,λ,Y_0} with respect to $\mathcal{M}^{Z,\lambda,Y_0}$:

$$
\begin{cases}\nY_{t}^{Z,\lambda,Y_{0}} = Y_{0} - \int_{0}^{t} f(s, X_{s-}, \hat{\alpha}_{s}^{Z,\lambda,Y_{0}}, \hat{\rho}_{s}^{Z,\lambda,Y_{0}}; \lambda_{s}) ds + \int_{0}^{t} Z_{s}^{*} d\mathcal{M}_{s}^{Z,\lambda,Y_{0}}, \\
\mathcal{E}_{t} = 1 + \int_{0}^{t} \mathcal{E}_{s-} X_{s-}^{*} \left(Q(s, \hat{\alpha}_{s}^{Z,\lambda,Y_{0}}, \hat{\rho}_{s}^{Z,\lambda,Y_{0}}) - Q^{0} \right) \psi_{s}^{+} d\mathcal{M}_{s}, \\
\hat{\rho}_{t}^{Z,\lambda,Y_{0}} = \mathbb{Q}^{Z,\lambda,Y_{0}} \circ \left(\hat{\alpha}_{t}^{Z,\lambda,Y_{0}}, X_{t} \right)^{-1}, \quad \frac{d\mathbb{Q}^{Z,\lambda,Y_{0}}}{d\mathbb{P}} = \mathcal{E}_{T}, \\
\hat{\alpha}_{t}^{Z,\lambda,Y_{0}} = \hat{\alpha}(t, X_{t-}, Z_{t}, \hat{\rho}_{t}^{Z,\lambda,Y_{0}}) \n\end{cases} \tag{4}
$$

where the process $\mathcal{M}^{\mathcal{Z},\boldsymbol{\lambda},Y_0}$ is defined by:

$$
\mathcal{M}_{t}^{\mathsf{Z},\boldsymbol{\lambda},Y_{0}}=\mathcal{M}_{t}-\int_{0}^{t}X_{s-}^{*}\left(Q(s,\hat{\alpha}_{s}^{\mathsf{Z},\boldsymbol{\lambda},Y_{0}},\hat{\rho}_{s}^{\mathsf{Z},\boldsymbol{\lambda},Y_{0}})-Q^{0}\right)ds,
$$

is a $\mathbb{Q}^{\mathcal{Z},\boldsymbol{\lambda},Y_{0}}$ -martingale. Furthermore, under $\mathbb{Q}^{\mathcal{Z},\boldsymbol{\lambda},Y_{0}}$,

$$
X_t=X_0+\int_0^t X_{s-}^*Q(s,\hat{\alpha}_s^{\mathcal{Z},\boldsymbol{\lambda},Y_0},\hat{\rho}_s^{\mathcal{Z},\boldsymbol{\lambda},Y_0})ds+\mathcal{M}_t^{\mathcal{Z},\boldsymbol{\lambda},Y_0}.
$$
 (5)

Numerical approach to the Stackelberg game 5/9

Recall: the tuple $(Y, Z, \hat{\alpha}, \hat{\rho}, \mathbb{O})$ solves the FBSDE.

Hypothesis C

 \triangleright $\hat{\alpha}$ depends only on the state marginal of the joint distribution: $\exists \; \check{\alpha} : [0, T] \times E \times \mathbb{R}^m \times \mathcal{P}(E) \rightarrow \mathbb{R}$ such that

 $\hat{\alpha}_t = \check{\alpha}(t, X_{t-}, Z_t, \hat{\rho}_t)$

where $\hat{p}_t(\cdot) = \hat{p}_t(A, \cdot)$.

Hypothesis C is weaker than assuming that \hat{a} (the function) is independent of the first marginal of $\hat{\rho}$ (cf. Carmona-Wang (2018), Laurière-Tangpi (2019, 2020))

KORKARYKERKER POLO

Numerical approach to the Stackelberg game 6/9

Input: Transition rate matrix function Q ; number of particles N ; time horizon T; initial distribution p_0 ; control functions λ , y_0 , z Output: Sampled trajectories for [\(4\)](#page-43-0)–[\(5\)](#page-43-1) (rewritten FBSDE)

1: Let $n = 0$, $t_0 = 0$; pick $X_0^i \sim p^0$ i.i.d and set $Y_0^i = y_0(X_0^i)$, $i \in [\![N]\!]$
2. while $t \leq T$ do 2: while $t_n \leq T$ do 3: Set $Z_{t_n}^i = z(t_n, X_{t_n}^i), \alpha_{t_n}^i = \check{a}(t_n, X_{t_n}^i, Z_{t_n}^i, p_{t_n}), i \in [\![N]\!]$ 4: Let $\bar{\rho}^N_{t_n} = \frac{1}{N} \sum_{i=1}^N \delta_{(X^i_{t_n},\alpha^i_{t_n})}$ and $\bar{\rho}^N_{t_n} = \frac{1}{N} \sum_{i=1}^N \delta_{X^i_{t_n}}$ 5: Pick $(T^{i,e})_{e \in E, i \in [N]}$ i.i.d. with exponential distribution of parameter 1 6: Set the holding times: $\tau^{i,e} = T^{i,e}/Q_{X_{t_n}^i,e}(t_n,\alpha_{t_n}^i,\bar{\rho}_{t_n}^N), i \in [\![N]\!], e \in E$ 7: Let $e^i_k =_{e \in E} \tau^{i,e}$ and $\tau^i_k = \tau^{i,e^i_k} = \min_{e \in E} \tau^{i,e}, i \in [N]$ 8: Let $i_k =_{i \in [\![N]\!]}\tau^i_k$ be the first particle to jump 9: Let $\Delta t = \tau_{\star}^{i_{\star}}$; set $X_{t_n+\Delta t}^{i_{\star}} = e_{\star}^{i_{\star}}$, and for every $i \neq i_{\star}$, set $X_{t_n+\Delta t}^{i} = X_{t_n}^{i}$ 10: Let $\Delta M_{t_n}^i = X_{t_n+\Delta t}^i - X_{t_n}^i - (X_{t_n}^i)^* Q(t_n, \alpha_{t_n}^i, \bar{\rho}_{t_n}^N) \Delta t$, $i \in [\![N]\!]$
11. Let $X^i = X^i$ f(t $X^i = \alpha^{i} \bar{\rho}_{t_n}^N$, $\lambda(t_n)$), λ_{t_n} (Z^i)* ΔM^i 11: Let $Y_{t_n+\Delta t}^i = \overline{Y}_{t_n}^i - f(t, X_{t_n}^i, \overline{\alpha}_{t_n}^i, \overline{\rho}_{t_n}^N; \lambda(t_n))\Delta t + (\overline{Z}_{t_n}^i)^* \Delta M_{t_n}^i, i \in \llbracket N \rrbracket$
12. Set $n = n+1$ and $t = t_{n+1} + \Delta t$ 12: Set $n = n + 1$ and $t_n = t_{n-1} + \Delta t$ 13: end while 14: Set $n_{tot} = n$, $t_{n_{tot}} = T$, $(X_{t_{n_{tot}}}^i, Y_{t_{n_{tot}}}^i, Z_{t_{n_{tot}}}^i) = (X_{t_{n_{tot}-1}}^i, Y_{t_{n_{tot}-1}}^i, Z_{t_{n_{tot}-1}}^i)$ 15: **return** $(X_{t_n}^i, Y_{t_n}^i, Z_{t_n}^i)_{n=0,\ldots,n_{tot}, i \in [\![N]\!]}$ and $(t_n)_{n=0,\ldots,n_{tot}}$

> $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$ Ω

Numerical approach to the Stackelberg game 7/9

 $z_{\theta_1}:[0,\,T]\times E\to\mathbb{R}^m,\quad \lambda_{\theta_2}:[0,\,T]\to\mathbb{R}^m_+,\quad y_{0,\theta_3}:E\to\mathbb{R}^m_+$

 \blacktriangleright Feedforward fully connected neural networks

IDED The principal's cost for $(\theta_1, \theta_2, \theta_3)$:

$$
\begin{aligned} \mathbb{J}^N(\theta)=&\frac{1}{M}\sum_{j=1}^M\Bigg[\sum_{n=0}^{n_{\text{tot}}-1}\Big(\textit{c}_0\left(t_n,\bar{p}_{t_n}^{j,N,\theta}\right)+f_0(t_n,\lambda_{\theta_2}(t_n))\Big)\left(t_{n+1}-t_n\right) \\ &+\textit{C}_0\left(\bar{p}_{T}^{j,N,\theta}\right)+\frac{1}{N}\sum_{i=1}^N U^{-1}\left(-Y_{T}^{j,i,\theta}\right)\Bigg], \end{aligned}
$$

where for $j=1,\ldots,M$, $(\bm{Y}^{j,i,\theta})_{i\in[\![\mathbb N]\!]}$ and $\bm{\bar{\rho}}^{j,N,\theta}$ are constructed using $(z, \lambda, y_0) = (z_{\theta_1}, \lambda_{\theta_1}, y_{0, \theta_3}).$

Numerical approach to the Stackelberg game 8/9

Final goal: minimize \mathbb{J}^N over NN parameters $\theta = (\theta_1, \theta_2, \theta_3)$.

Minimization by Adaptive Moment Estimation algorithm:

- \triangleright second algorithm of Carmona-Laurière (2019)
- \blacktriangleright adapted to
	- \blacktriangleright the finite state case
	- \blacktriangleright the Stackelberg setting

For a sample $S = (X_{t_n}^i, Y_{t_n}^i, Z_{t_n}^i)_{n=0,\ldots,n_{tot},i\in[\![N]\!]}$:

$$
\mathbb{J}_{S}^{N}(\theta) = \sum_{n=0}^{n_{tot}-1} \left(c_{0} \left(t_{n}, \bar{p}_{t_{n}}^{N,\theta} \right) + f_{0}(t_{n}, \lambda_{\theta_{2}}(t_{n})) \right) (t_{n+1} - t_{n}) + C_{0} \left(\bar{p}_{T}^{N,\theta} \right) + \frac{1}{N} \sum_{i=1}^{N} U^{-1} \left(-Y_{T}^{i,\theta} \right)
$$
\n(6)

KORKAR KERKER SAGA

where $\overline{p}_{t_n}^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_{t_n}^i}$.

Numerical approach to the Stackelberg game 9/9

Input: Initial parameter θ_0 ; number of iterations K; sequence $(\beta_k)_{k=0,\dots,K-1}$ of learning rates; transition rate matrix function Q ; number of particles N ; time horizon T ; initial distribution p_0 **Output:** Approximation of θ^* minimizing \mathbb{J}^N

- 1: for $k = 0, 1, 2, \ldots, K 1$ do 2: Sample $S = (X_{t_n}^i, Y_{t_n}^i, Z_{t_n}^i)_{n=0,\ldots,n_{tot}}^{i \in [\![N]\!]}$ and $(t_n)_{n=0,\ldots,n_{tot}}$ with controls $(z, \lambda, y_0) = (z_{\theta_{k,0}}, \lambda_{\theta_{k,1}}, y_{0, \theta_{k,2}})$ and parameters: Q , N , T , p_0
- 3: Compute the gradient $\nabla \mathbb{J}_{S}^{N}(\theta_{k})$ of $\mathbb{J}_{S}^{N}(\theta_{k})$ defined by (6)
- 4: Set $\theta_{k+1} = \theta_k \beta_k \nabla \mathbb{J}_{S}^{N}(\theta_k)$
- 5: end for
- 6: return θ_{κ}

KORKAR KERKER ST VOOR

Example: SIR MFG and an inactive principal 1/6

$$
f(t, x, \alpha, \rho; \lambda) = \frac{c_{\lambda}}{2} \left(\lambda^{(5)} - \alpha \right)^2 \mathbb{1}_S(x) + \left(\frac{1}{2} \left(\lambda^{(1)} - \alpha \right)^2 + c_1 \right) \mathbb{1}_I(x) + \frac{1}{2} \left(\lambda^{(R)} - \alpha \right)^2 \mathbb{1}_R(x), \tag{7}
$$

Kロトメ部トメミトメミト ミニのRC

- \blacktriangleright Deviation from recommended contact factor λ
- \blacktriangleright Infection cost

Example: SIR MFG and an inactive principal 2/6

Hypothesis D (to have semi-explicit solutions!)

- **►** There exists a unique solution $(\hat{Y}, \hat{Z}, \hat{\alpha}, \hat{\rho}, \hat{\mathbb{Q}})$ to the FBSDE.
- Evaluated at the equilibrium, \hat{a} , f , and Q are functions of the state-marginal law only: \bar{a} , \bar{f} , \bar{Q} .
- \triangleright The function \overline{a} is Lischitz continuous in z and p (the state marginal).

Example: SIR MFG and an inactive principal 2/6

Hypothesis D (to have semi-explicit solutions!)

- **►** There exists a unique solution $(\hat{Y}, \hat{Z}, \hat{\alpha}, \hat{\rho}, \hat{\mathbb{Q}})$ to the FBSDE.
- Evaluated at the equilibrium, \hat{a} , f , and Q are functions of the state-marginal law only: \bar{a} , \bar{f} , \bar{Q} .
- \triangleright The function \overline{a} is Lischitz continuous in z and p (the state marginal).

Definition

Let $(\alpha, \bm\rho)\in\mathbb{A}\times M(\mathcal{P}(E))$ and denote by $\mathbb{Q}^{\bm\alpha,\bm\rho}\in\mathcal{P}(\Omega)$ the measure such that the coordinate process X_t has transition rate matrix $\bar{Q}(t,\alpha_t,\rho_t)$ under $\mathbb{Q}^{\bm{\alpha,p}}.$ Assume that $(\bar{\alpha}, \bar{\mathbf{p}}) \in \mathbb{A} \times M(\mathcal{P}(E))$ satisfies

(i)
$$
\bar{\boldsymbol{\alpha}} = \arg \inf_{\alpha \in \mathbb{A}} \mathbb{E}^{\mathbb{Q}^{\alpha, \bar{\boldsymbol{\rho}}}} \left[\int_0^T \bar{f}(t, X_t, \alpha_t, \bar{\boldsymbol{\rho}}_t) dt - U(\xi) \right],
$$

(ii) $\forall t \in [0, T], i \in \{1, ..., m\} : \bar{p}_t(i) = \mathbb{Q}^{\bar{\alpha}, \bar{\rho}} (X_t = e_i).$

Then $(\bar{\alpha}, \bar{p})$ is called a non-extended mean field Nash equilibrium.

Proposition

Assume Hypothesis A–D to be true. Denote the tuple of Hypothesis D by $(\hat{\mathsf{Y}}, \hat{\mathsf{Z}}, \hat{\alpha}, \hat{\rho}, \mathbb{Q})$. The pair $(\hat{\alpha}, \hat{\rho})$ is a mean-field Nash equilibrium. Let $\hat{\rho}_t$ be the E-marginal of $\hat{\rho}_t$ and let $(\bar{\alpha}, \bar{\mathbf{p}})$ be a non-extended mean field Nash equilibrium. Then $\hat{p}_t = \bar{p}_t$ for dt-a.e. $t \in [0, T]$ and $\hat{\alpha}_t = \bar{\alpha}_t$ d $\mathbb{P} \otimes dt$ -a.e..

Example: SIR MFG and an inactive principal 3/6

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Example: SIR MFG and an inactive principal 4/6

Figure: Semi-explicit (ODE) solution in the four test cases

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ ○ 결 ...

Example: SIR MFG and an inactive principal 5/6

Figure: Late lockdown, ODE solution. Evolution of the population state distribution (left), evolution of the controls (middle), convergence of the solver (right).

Figure: Late lockdown, numerical solution. Evolution of the population state distribution (left), evolution of the controls (middle), convergence of the loss value (right).

Example: SIR MFG and an inactive principal 6/6

Figure: Early lockdown, ODE solution. Evolution of the population state distribution (left), evolution of the controls (middle), convergence of the solver (right).

Figure: Early lockdown, numerical solution. Evolution of the population state distribution (left), evolution of the controls (middle), convergence of the loss value (right).

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

Example: SIR Stackelberg game 1/2

We now include the regulator's optimization to the previous example, making the problem a Stackelberg game.

More specifically, we set $C_0(p) = 0$ and

$$
c_0(t,p) = c_{\rm Inf} p(t)^2, \quad f_0(t,\lambda) = \sum_{i \in \{S,I,R\}} \frac{\beta^{(i)}}{2} \left(\lambda^{(i)} - \bar{\lambda}^{(i)}\right)^2 \quad (8)
$$

 $\overline{}$

KORKARYKERKER POLO

for constant $\bar{\lambda}, \bar{\beta} \in \mathbb{R}^m_+$ and $c_{\rm Inf} > 0.$

Deviation from some incentive levels $\bar{\lambda}$

 \blacktriangleright Infection cost

For this case we can derive a semi-explicit solution.

T p^0 c_{λ} c_l c_{Inf} β λ β γ η κ					
30 (0.9, 0.1, 0) 10 0.5 1 (0.2, 1, 0) (1, 0.7, 0) 0.25 0.1 0 0					

Example: SIR Stackelberg game 2/2

Figure: SIR Stackelberg game, ODE solution. Evolution of the population state distribution (left), evolution of the controls (middle), convergence of the solver (right).

Figure: SIR Stackelberg, numerical solution. Evolution of the population state distribution (left), evolution of the controls (middle), convergence of the loss value (right).

Conclusions

A Stackelberg game to model decision making in an epidemic.

- \blacktriangleright The model incorporates at the same time a non-cooperative population and a regulator such as a government
- \triangleright Evolution of the system described from the point of view of a typical (infinitesimal) agent
- ▶ Numerical method based on neural network approximation and Monte Carlo simulations to compute the optimal policy

What lies ahead?

 \triangleright Further work on the FBSDE system to justify assumptions about its solution

KORK ERKER ADAM ADA

- \triangleright Generalizing beyond the SIR model is crucial for applications to epidemiological models. Multiple populations, pharmaceutical interventions, testing, etc.
- \triangleright Other ways of modeling incentives

Thank you!