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Introduction 1/2

In the absence of a vaccine, how to incentivize the individuals of society to
make the right effort in the fight against an epidemic?

A policy maker’s problem: give incentives and penalties to the population that

1. the populations accepts and follows

2. yields a behavior that ”controls” the epidemic

How can we encourage risk-averse behavior and reward it optimally?
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This talk is based on the approach explored in ”Optimal incentives to mitigate
epidemics: A Stackelberg mean field game approach” A., Carmona, Dayanikli,
Lauriére, arXiv 2020.

- The society consists of one principal and a large population of agents.
- How the disease spreads depends on the agents’ efforts to slow spread.
- The agents are not cooperating! They are playing a mean field game.
- Principal optimizes a contract given knowledge of the agents’ response.

The principal and the population play a Stackelberg game.

Principal Agent population

Incentives: (λ, ξ)

Mean field equilibrium: α̂(λ,ξ)

Mean field game: inf α J(λ,ξ)(α;ρ)

Optimization: inf(λ,ξ) J(λ, ξ; α̂(λ,ξ))
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Compartmental models of epidemics 1/4

Epidemic modelling with the SIR model

S I R
βS(t)I (t) γ

Individuals are categorized either as ”Susceptible”, ”Infected” or ”Removed”.

The system of equation that describes the evolution of the epidemic:
Ṡ(t) = −βS(t)I (t), S(0) ≥ 0

İ (t) = βS(t)I (t)− γI (t), I (0) ≥ 0

Ṙ(t) = γI (t), R(0) ≥ 0

S(0) + I (0) + R(0) = 1,

Many, many variations!
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The epidemic’s dynamics is described by two parameters: β and γ.

I Recovery rate γ, the reciprocal average infectious time.

I Transmission rate β.

What is a reasonable model for agent control of the transmission rate?

- In a meeting, does the risk of infection depend on all the meeting parties
effort to reduce the transmission rate? Linearly or non-linearly?

- Should effort to reduce transmission rate be universal or state-dependent?
Lock down only for the sick or for all?

We argue that β, if controlled, can depend on the action of many agents...
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Consider N agents. Agent i ∈ {1, . . . ,N} has state X i
t ∈ {S , I ,R} at time t.

I Meetings in the population occur pairwise and at random with rate β.

I If a susceptible agent meets an infected agent, she is infected.

I The recovery rate is γ.

The population of agents is described by an interacting system of (continuous
time) exchangeable Markov chains with transition rate matrix

Q(pN
t ) =

−βp
N
t (I ) βpN

t (I ) 0

0 −γ γ

0 0 0


where pN

t (I ) is the proportion of the population that is infected at time t,

pN
t = (pN

t (S), pN
t (I ), pN

t (R)) :=

(
1

N

N∑
j=1

1i (X
j
t )

)
i∈{S,I ,R}
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Compartmental models of epidemics 4/4

What if the agents can take precautions so that a meeting does not
automatically lead to infection?

I The probability of infection is decreased by the action/effort of two agents
that meet in a multiplicative way.

The agents control their ”contact factor”.

With contact factor control, agent j ’s transition rate from S to I :

βαj
t

1

N

N∑
k=1

αk
t 1I (X

k
t−)

I equals the SIR rate βpN
t (I ) if αj

t = 1, j = 1, . . . ,N.

Symmetric, weak interaction ... MFG?
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Mean field games 1/3

Idea from statistical physics:

I N players in a game
I Interactions between players’ states

I in the coefficients of the state dynamics
I in the cost functions

I exclusively through the empirical distribution

µN
t =

1

N

N∑
j=1

δ
X

j
t

Consequences:

I Strong symmetry among the players

I Each player can hardly influence the system when N is large.

Mean field game (MFG): the limit game as N →∞

(i) α̂ = arg inf
α

J(α; µ̂), (ii) µ̂ = distribution of X α̂

Lasry-Lions (2006), Huang-Malhamé-Caines (2006)
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βαj
t

1

N

N∑
k=1

αk
t 1I (X

k
t−)

We anticipate that, for very large N, we can approximate the game with
contact factor control with an extended finite-state MFG.

Transition rate matrix

Q(t, α, ρ) =

−βαt

∫
A
aρt(da, I ) βαt

∫
A
aρt(da, I ) 0

0 −γ γ

0 0 · · ·

 ,
where ρt is a joint state-and-control distribution.

Gomes et al (2010, 2013), Kolokoltsov (2012), Carmona-Wang (2016, 2018),
Cecchin-Fischer (2018), Bayraktar-Cohen (2018), Choutri et al (2018, 2019).
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Mean field games 3/3

Motivated by the SIR example, we will consider a MFG with:

I finite state space

I extended mean field interaction, i.e., interaction through the joint
state-control distribution ρ

for the purpose of modeling decision making during an epidemic.

Elie et al (2020), Hubert et al (2020), Charpentier et al (2020), Cho (2020)

Principal Agent population

Incentives: (λ, ξ) Mean field game: inf α J(λ,ξ)(α;ρ)

But first, some notation ...



Mean field games 3/3

Motivated by the SIR example, we will consider a MFG with:

I finite state space

I extended mean field interaction, i.e., interaction through the joint
state-control distribution ρ

for the purpose of modeling decision making during an epidemic.

Elie et al (2020), Hubert et al (2020), Charpentier et al (2020), Cho (2020)

Principal Agent population

Incentives: (λ, ξ) Mean field game: inf α J(λ,ξ)(α;ρ)

But first, some notation ...



MFG for epidemics with contract factor control 1/3

Setup

I Sample space Ω càdlàg functions ω : [0,T ]→ E := {e1, . . . , em}
I Canonical process X : Xt(ω) = ω(t).

I Filtration F natural filtration generated by X and F := FT .

I Basic transition rate matrix Q0: rate from ei to ej equal to 1 if
(i , j) ∈ G ⊂ {1, . . . ,m}2, otherwise zero.

I Basic probability space (Ω,F,F ,P) such that
I P ◦ X−1

0 = p0 ∈ P(E)
I X Markov chain with transition rate matrix Q0

I Under P X has the representation

Xt = X0 +

∫ t

0

X ∗s−Q
0ds +Mt (1)
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Controlled probability space

I Control processes A A-valued F-predictable processes and A := [0, 1].

I Action-state laws R := P(A× E) Borel probability measures on A× E .

I Measure flows M(R) and M(P(E)) measurable mappings from [0,T ] to
R and P(E), respectively.

I Metrics: A Euclidean metric, E bounded discrete metric, A× E 1-product
metric, P(E) Euclidean metric (on the simplex), R 1-Wasserstein metric
WR .

I Controlled transition rate matrix Q : [0,T ]× A×R → Rm×m bounded,
measurable function such that Q(t, α, ρ) is a Q-matrix.

I For (α,ρ) ∈ A×M(R) the probability measure Qα,ρ on (Ω,F) is given
by dQα,ρ = ETdP on F where

Et = 1 +

∫ t

0

Es−X ∗s−
(
Q(s, αs , ρs)− Q0

)
ψ+

s dMs ,

ψt := diag(Q0Xt−)− Q0diag(Xt−)− diag(Xt−)Q0

(2)

I Under Qα,ρ, X is a Markov chain with transition rate matrix Q(t, αt , ρt)
at time t.
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The agents’ problem: find the mean-field Nash equilibrium.

The cost for α ∈ A is

Jλ,ξ(α;ρ) := EQα,ρ
[∫ T

0

f (t,Xt , αt , ρt ;λt)dt − U(ξ)

]
,

where

(λ, ξ) principal’s policy choice, the contract
f : [0,T ]× E × A×R → R running cost, depends on λ

U : R→ R utility of a terminal payment
ρ = (ρt)t∈[0,T ] ∈ M(R) joint state-control distribution in the population

Qα,ρ ∈ P(Ω,F) under which Xt has rate matrix Q(t, αt , ρt)

Definition
If the pair (α̂, ρ̂) ∈ A×M(R) satisfies

(i) α̂ = arg infα∈A J
λ,ξ(α, ρ̂);

(ii) ∀t ∈ [0,T ] : ρ̂t = Qα̂,ρ̂ ◦ (α̂t ,Xt)
−1,

then (α̂, ρ̂) is a mean-field Nash equilibrium given the contract (λ, ξ).
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Characterizing mean-field Nash equilibria 1/3

Principal Agent population

Incentives: (λ, ξ)

Mean field equilibrium: α̂(λ,ξ)

Mean field game: inf α J(λ,ξ)(α;ρ)

N (λ, ξ) := the set of mean field Nash equilibria given the contract (λ, ξ).

A forward-backward SDE (FBSDE) helps us solving for N (λ, ξ)...
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Under suitable assumptions (α̂, ρ̂) ∈ N (λ, ξ) if (Y ,Z , α̂, ρ̂,Q) solves 1 the
FBSDE 

Yt = U(ξ) +

∫ T

t

Ĥ(s,Xs−,Zs , ρ̂s)ds −
∫ T

t

Z∗s dMs ,

Et = 1 +

∫ t

0

Es−X ∗s−
(
Q(s, α̂s , ρ̂s)− Q0

)
ψ+

s dMs ,

ρ̂t = Q ◦ (α̂t ,Xt)
−1 ,

dQ
dP

= ET , α̂t = â(t,Xt−,Zt , ρ̂t),

(3)

where Ĥ is the minimized Hamiltonian and M is the canonical process’
compensating martingale (under P):

I H : (t, x , z , α, ρ) 7→ x∗
(
Q(t, α, ρ)− Q0

)
z + f (t, x , α, ρ;λt)

I Xt = X0 +
∫ t

0
X ∗s−Q

0ds +Mt

1The tuple (Y ,Z , α̂, ρ̂,Q) solves (3) if Y ∈ H2, Z ∈ H2
X , α ∈ A, ρ ∈ M(R), Q is a

probability measure on (Ω,F) and (3) is satisfied P− a.s. for all t ∈ [0,T ].

H2 càdlàg, real-valued, F-adapted Y : E[
∫ T

0
Y 2
t dt] < +∞

H2
X left cont., Rm-valued, F-adapted Z : E[

∫ T
0
‖Z‖2

Xt−
dt] < +∞

‖z‖2
Xt−

= z∗ψtz, z ∈ Rm
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Hypothesis A

I The transition rates are bounded and Lipschitz continuous in control and
law

I The running cost is Lipschitz continuous in control and law
I The Hamiltonian admits a unique minimizer which is

I feedback in (t, z, ρ)
I measurable
I Lipschitz continuous in z

Proposition

Assume that Hypothesis A holds true and (λ, ξ) fixed and admissible.

I If the FBSDE admits a solution (Y ,Z ,α,ρ,Q), then (α,ρ) ∈ N (λ, ξ).

I If (α̂, ρ̂) ∈ N (λ, ξ), then the FBSDE admits a solution (Y ,Z ,α,ρ,Q)
such that α = α̂, dP⊗ dt-a.s., and ρt = ρ̂t , dt-a.e.

Proof.
Along the lines of Carmona-Wang (2018).



Stackelberg game for epidemics with contract factor control 1/2

Principal Agent population

Incentives: (λ, ξ)

Mean field equilibrium: α̂(λ,ξ)

Mean field game: inf α J(λ,ξ)(α;ρ)

Optimization: inf(λ,ξ) J(λ, ξ; α̂(λ,ξ))

What is a Stackelberg game? Generically:

I 2 players: ”leader” (principal) and ”follower” (Mean field game)

I The leader moves first, then the follower moves

I The follower optimizes her objective function (finds the equilibrium)
knowing the leaders move (the policy/incentive structure)

I The leader optimizes her objective function by anticipating the optimal
(equilibrium) response from the follower
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Definition
A policy (λ, ξ) is admissible if λ ∈ Λ 2, ξ is F-measurable, and N (λ, ξ) is a
singleton. We denote the set of admissible policies by C.

The principal’s cost for policy (λ, ξ) ∈ C is

J(λ, ξ) := EQN (λ,ξ)
[∫ T

0

(
c0(t, ρ̂λ,ξt (A, ·)) + f0(t, λt)

)
dt + C0(ρ̂λ,ξT (A, ·)) + ξ

]

If the population’s equilibrium cost is too high, they reject the policy!

I Rejection whenever cost exceeds the reservation threshold κ ∈ R
I The principal disregards policies that will be rejected

I The principal’s optimization problem is

V (κ) := inf
(λ,ξ)∈C

inf
(α,ρ)∈N (λ,ξ)

Jλ,ξ(α;ρ)≤κ

J(λ, ξ).

Holmström-Milgrom (1987), Sannikov (2008, 2013), Djehiche-Helgesson (2014),
Cvitanić et al (2018), Carmona-Wang (2018), Elie et al (2019)

2Λ: the set of measurable Rm
+-valued functions with domain [0,T ]
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How can we treat the Stackelberg game problem numerically?

Rewriting Discretization Parameterization

I Reposing the FBSDE as a control problem. ”Sannikov’s trick”.

I Time-discretization and Monte Carlo-approximation.

I Parametrizing the optimization variables. Neural networks.
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Rewriting Discretization Parameterization

Given Z ∈ H2
X , λ ∈ Λ, and real-valued F0-measurable Y0, consider under P:

Y Z ,λ,Y0
t = Y0 −

∫ t

0

Ĥ(s,Xs−,Zs , ρ̂
Z ,λ,Y0
s )ds +

∫ t

0

Z∗s dMs ,

Et = 1 +

∫ t

0

Es−X ∗s−
(
Q(s, α̂Z ,λ,Y0

s , ρ̂Z ,λ,Y0
s )− Q0

)
ψ+

s dMs ,

ρ̂Z ,λ,Y0
t = QZ ,λ,Y0 ◦

(
α̂Z ,λ,Y0
t ,Xt

)−1

,
dQZ ,λ,Y0

dP
= ET ,

α̂Z ,λ,Y0
t = α̂(t,Xt−,Zt , ρ̂

Z ,λ,Y0
t ).

Same equations as the FBSDE, except that the dynamic of Y is written in the
forward direction of time.
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Hypotesis B

I The function U : R→ R is invertible.

I c0, f0 are measurable on [0,T ]× Rm.

Consider the following optimal control problem

Ṽ (κ) := inf
Y0:E[Y0]≤κ

inf
Z∈H2

X
λ∈Λ

EQZ,λ,Y0

[∫ T

0

(
c0

(
t, p̂Z ,λ,Y0

t

)
+ f0(t, λt)

)
dt

+ C0

(
p̂Z ,λ,Y0
T

)
+ U−1

(
−Y Z ,λ,Y0

T

)]
,

Proposition

If Hypothesis A and B then Ṽ (κ) = V (κ).

Proof.
Along the lines of Carmona-Wang (2018).

I The backward equation has been ”replaced” by an optimization problem.
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Final polishing: express Y Z ,λ,Y0 with respect to MZ ,λ,Yo :

Y Z ,λ,Y0
t = Y0 −

∫ t

0

f (s,Xs−, α̂
Z ,λ,Y0
s , ρ̂Z ,λ,Y0

s ;λs)ds +

∫ t

0

Z∗s dMZ ,λ,Y0
s ,

Et = 1 +

∫ t

0

Es−X ∗s−
(
Q(s, α̂Z ,λ,Y0

s , ρ̂Z ,λ,Y0
s )− Q0

)
ψ+

s dMs ,

ρ̂Z ,λ,Y0
t = QZ ,λ,Y0 ◦

(
α̂Z ,λ,Y0
t ,Xt

)−1

,
dQZ ,λ,Y0

dP
= ET ,

α̂Z ,λ,Y0
t = α̂(t,Xt−,Zt , ρ̂

Z ,λ,Y0
t )

(4)
where the process MZ ,λ,Y0 is defined by:

MZ ,λ,Y0
t =Mt −

∫ t

0

X ∗s−

(
Q(s, α̂Z ,λ,Y0

s , ρ̂Z ,λ,Y0
s )− Q0

)
ds,

is a QZ ,λ,Y0 -martingale. Furthermore, under QZ ,λ,Y0 ,

Xt = X0 +

∫ t

0

X ∗s−Q(s, α̂Z ,λ,Y0
s , ρ̂Z ,λ,Y0

s )ds +MZ ,λ,Y0
t . (5)
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Rewriting Discretization Parameterization

Recall: the tuple (Y ,Z , α̂, ρ̂,Q) solves the FBSDE.

Hypothesis C

I α̂ depends only on the state marginal of the joint distribution:
∃ α̌ : [0,T ]× E × Rm × P(E)→ R such that

α̂t = α̌(t,Xt−,Zt , p̂t)

where p̂t(·) = ρ̂t(A, ·).

Hypothesis C is weaker than
assuming that â (the function) is independent of the first marginal of ρ̂

(cf. Carmona-Wang (2018), Laurière-Tangpi (2019, 2020))
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Input: Transition rate matrix function Q; number of particles N; time horizon
T ; initial distribution p0; control functions λ, y0, z
Output: Sampled trajectories for (4)–(5) (rewritten FBSDE)

1: Let n = 0, t0 = 0; pick X i
0 ∼ p0 i.i.d and set Y i

0 = y0(X i
0), i ∈ JNK

2: while tn ≤ T do
3: Set Z i

tn = z(tn,X
i
tn ), αi

tn = ǎ(tn,X
i
tn ,Z

i
tn , ptn ), i ∈ JNK

4: Let ρ̄Ntn = 1
N

∑N
i=1 δ(X i

tn
,αi

tn
) and p̄N

tn = 1
N

∑N
i=1 δX i

tn

5: Pick (T i,e)e∈E ,i∈JNK i.i.d. with exponential distribution of parameter 1
6: Set the holding times: τ i,e = T i,e/QX i

tn
,e(tn, α

i
tn , ρ̄

N
tn ), i ∈ JNK, e ∈ E

7: Let e i? =e∈E τ
i,e and τ i? = τ i,e

i
? = mine∈E τ

i,e , i ∈ JNK
8: Let i? =i∈JNK τ

i
? be the first particle to jump

9: Let ∆t = τ i?? ; set X i?
tn+∆t = e i?? , and for every i 6= i?, set X i

tn+∆t = X i
tn

10: Let ∆M i
tn = X i

tn+∆t − X i
tn − (X i

tn )∗Q(tn, α
i
tn , ρ̄

N
tn )∆t, i ∈ JNK

11: Let Y i
tn+∆t = Y i

tn − f (t,X i
tn , α

i
tn , ρ̄

N
tn ;λ(tn))∆t + (Z i

tn )∗∆M i
tn , i ∈ JNK

12: Set n = n + 1 and tn = tn−1 + ∆t
13: end while
14: Set ntot = n, tntot = T , (X i

tntot
,Y i

tntot
,Z i

tntot
) = (X i

tntot−1
,Y i

tntot−1
,Z i

tntot−1
)

15: return (X i
tn ,Y

i
tn ,Z

i
tn )n=0,...,ntot ,i∈JNK and (tn)n=0,...,ntot
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Rewriting Discretization Parameterization

I Parameterize (Z ,λ,Y0)

zθ1 : [0,T ]× E → Rm, λθ2 : [0,T ]→ Rm
+, y0,θ3 : E → R

I Feedforward fully connected neural networks

I The principal’s cost for (θ1, θ2, θ3):

JN(θ) =
1

M

M∑
j=1

[
ntot−1∑
n=0

(
c0

(
tn, p̄

j,N,θ
tn

)
+ f0(tn, λθ2 (tn))

)
(tn+1 − tn)

+ C0

(
p̄j,N,θ
T

)
+

1

N

N∑
i=1

U−1
(
−Y j,i,θ

T

)]
,

where for j = 1, . . . ,M, (Y j,i,θ)i∈JNK and p̄j,N,θ are constructed using
(z , λ, y0) = (zθ1 , λθ1 , y0,θ3 ).
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Final goal: minimize JN over NN parameters θ = (θ1, θ2, θ3).

Minimization by Adaptive Moment Estimation algorithm:

I second algorithm of Carmona-Laurière (2019)
I adapted to

I the finite state case
I the Stackelberg setting

For a sample S = (X i
tn ,Y

i
tn ,Z

i
tn )n=0,...,ntot ,i∈JNK:

JNS (θ) =

ntot−1∑
n=0

(
c0

(
tn, p̄

N,θ
tn

)
+ f0(tn, λθ2 (tn))

)
(tn+1 − tn)

+ C0

(
p̄N,θ
T

)
+

1

N

N∑
i=1

U−1
(
−Y i,θ

T

) (6)

where pN
tn

= 1
N

∑N
i=1 δX i

tn
.
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Input: Initial parameter θ0; number of iterations K ; sequence (βk)k=0,...,K−1 of
learning rates; transition rate matrix function Q; number of particles N; time
horizon T ; initial distribution p0

Output: Approximation of θ∗ minimizing JN

1: for k = 0, 1, 2, . . . ,K − 1 do
2: Sample S = (X i

tn ,Y
i
tn ,Z

i
tn )

i∈JNK
n=0,...,ntot

and (tn)n=0,...,ntot with controls
(z , λ, y0) = (zθk,0 , λθk,1 , y0,θk,2 ) and parameters: Q, N, T , p0

3: Compute the gradient ∇JNS (θk) of JNS (θk) defined by (6)
4: Set θk+1 = θk − βk∇JNS (θk)
5: end for
6: return θK

Rewriting Discretization Parameterization
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S I R

βαt

∫
aρt(da, I ) γ

η

f (t, x , α, ρ;λ) =
cλ
2

(
λ(S) − α

)2

1S(x) +

(
1

2

(
λ(I ) − α

)2

+ cI

)
1I (x)

+
1

2

(
λ(R) − α

)2

1R(x),

(7)

I Deviation from recommended contact factor λ

I Infection cost
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Hypothesis D (to have semi-explicit solutions!)

I There exists a unique solution (Ŷ , Ẑ , α̂, ρ̂, Q̂) to the FBSDE.

I Evaluated at the equilibrium, â, f , and Q are functions of the
state-marginal law only: ā, f̄ , Q̄.

I The function ā is Lischitz continuous in z and p (the state marginal).

Definition
Let (α, p) ∈ A×M(P(E)) and denote by Qα,p ∈ P(Ω) the measure such that
the coordinate process Xt has transition rate matrix Q̄(t, αt , pt) under Qα,p.
Assume that (ᾱ, p̄) ∈ A×M(P(E)) satisfies

(i) ᾱ = arg infα∈A EQα,p̄
[∫ T

0
f̄ (t,Xt , αt , p̄t)dt − U(ξ)

]
,

(ii) ∀t ∈ [0,T ], i ∈ {1, . . . ,m} : p̄t(i) = Qᾱ,ρ̄ (Xt = ei ).

Then (ᾱ, p̄) is called a non-extended mean field Nash equilibrium.

Proposition

Assume Hypothesis A–D to be true. Denote the tuple of Hypothesis D by
(Ŷ , Ẑ , α̂, ρ̂,Q). The pair (α̂, ρ̂) is a mean-field Nash equilibrium. Let p̂t be
the E-marginal of ρ̂t and let (ᾱ, p̄) be a non-extended mean field Nash
equilibrium. Then p̂t = p̄t for dt-a.e. t ∈ [0,T ] and α̂t = ᾱt dP⊗ dt-a.e..
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the E-marginal of ρ̂t and let (ᾱ, p̄) be a non-extended mean field Nash
equilibrium. Then p̂t = p̄t for dt-a.e. t ∈ [0,T ] and α̂t = ᾱt dP⊗ dt-a.e..
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The regulator declares a fixed policy (λ, ξ)

Test case Contact factor ξ λ
(S)
t λ

(I )
t λ

(R)
t

Free spread Constant 0 1 1 1
No lockdown MF Nash eq. 0 1 1 1
Late lockdown MF Nash eq. 0 1− 0.31t>40 0.9− 0.31t>40 1
Early lockdown MF Nash eq. 0 1− 0.31t≤10 0.9− 0.31t≤10 1

Parameter choice

Parameter T p0 cλ cI β γ η

Value in tests 50 (0.9, 0.1, 0) 10 1 0.25 0.1 0
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Figure: Semi-explicit (ODE) solution in the four test cases
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Figure: Late lockdown, ODE solution. Evolution of the population state distribution
(left), evolution of the controls (middle), convergence of the solver (right).
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Figure: Late lockdown, numerical solution. Evolution of the population state
distribution (left), evolution of the controls (middle), convergence of the loss value
(right).
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Figure: Early lockdown, ODE solution. Evolution of the population state distribution
(left), evolution of the controls (middle), convergence of the solver (right).
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Figure: Early lockdown, numerical solution. Evolution of the population state
distribution (left), evolution of the controls (middle), convergence of the loss value
(right).
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We now include the regulator’s optimization to the previous example, making
the problem a Stackelberg game.

More specifically, we set C0(p) = 0 and

c0(t, p) = cInf p(I )2, f0(t, λ) =
∑

i∈{S,I ,R}

β̄(i)

2

(
λ(i) − λ̄(i)

)2

(8)

for constant λ̄, β̄ ∈ Rm
+ and cInf > 0.

I Deviation from some incentive levels λ̄

I Infection cost

For this case we can derive a semi-explicit solution.

T p0 cλ cI cInf β̄ λ̄ β γ η κ

30 (0.9, 0.1, 0) 10 0.5 1 (0.2, 1, 0) (1, 0.7, 0) 0.25 0.1 0 0
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Figure: SIR Stackelberg game, ODE solution. Evolution of the population state
distribution (left), evolution of the controls (middle), convergence of the solver (right).
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Figure: SIR Stackelberg, numerical solution. Evolution of the population state
distribution (left), evolution of the controls (middle), convergence of the loss value
(right).



Conclusions

A Stackelberg game to model decision making in an epidemic.

I The model incorporates at the same time a non-cooperative population
and a regulator such as a government

I Evolution of the system described from the point of view of a typical
(infinitesimal) agent

I Numerical method based on neural network approximation and Monte
Carlo simulations to compute the optimal policy

What lies ahead?

I Further work on the FBSDE system to justify assumptions about its
solution

I Generalizing beyond the SIR model is crucial for applications to
epidemiological models. Multiple populations, pharmaceutical
interventions, testing, etc.

I Other ways of modeling incentives

Thank you!


