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Some Queueing Theory

The Markov chain representing a M/M/n queue and a M/M/n/n queue:

0 1 2 . . . n . . .

0 1 2 . . . n

λ λ λ λ λ

µ 2µ 3µ nµ nµ

λ λ λ λ

µ 2µ 3µ nµ

Figure 1: Markovian multi-server queues with n servers. Above with infinite buffer and below with blocking.

i Stationary state

ii The arrivals follow a Poisson process with parameter λ

iii The service times are Exponentially distributed with parameter µ per server

iv There are n servers
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Multi-Class, Multi-Server Queues

We consider queueing networks with several job types (multi-class) and many servers
(multi-server). When some servers handle multiple-classes of job types the system
cannot be separated for each class and the Markov chain becomes more involved.

Customer r1 Agents: {1}

Agents: {1, 2}

Customer r2 Agents: {2}

type 1

type 2

Figure 2: Queueing network with 3 agent pools, where one pool serves both types of customers.
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Chaining in Short

Description and Motivation
In a chaining network each server(agent) is trained to handle two types of
jobs(customers). The agents are grouped in agent pools that serve the same types of
customers.

All customer types can be served by exactly two agent pools.

Such a system offers most of the benefits of the fully flexible network but to a fraction
of the training cost.

Furthermore, the chaining structure offers a high degree of robustness, choke points
can be spread out.
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Chaining Networks

Customer r1 Agents: {n, 1}

Customer r2 Agents: {1, 2}

...
...

...

Customer rn Agents: {n−1, n}

type 1

type 2

type n

Figure 3: Queueing network of chaining type with n agent pools and customer types.
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Chaining Literature

William C. Jordan and Stephen C. Graves, Principles on the Benefits of
Manufacturing Process Flexibility, Management Science, pages 577–594, volume
41, number 4, year 1995.

Inman, R. R. and Jordan, W. C. and Blumenfeld, D. E., Chained cross-training of
assembly line workers, International Journal of Production Research, pages
1899–1910, volume 42, number 10, year 2004
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Model Assumptions and Parameters

Assumptions

i Each agent can handle two types of jobs,

ii Agents in the same pool are trained on the same job types,

iii Agents with the same skill-set are indistinguishable,

iv Given routing rule,

v Piece-wise stationary demands.

Parameters

i n different job types and agent pools,

ii Arrivals ∼ Po(λi ), i = 1, . . . , n,

iii Service times ∼ Exp(µi,j ), i , j ∈ {1, . . . , n}.
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Chaining Network, revisited

λ1 r1 N1 : µ1,n, µ1,1

λ2 r2 N2 : µ2,1, µ2,2

...
...

...

λn rn Nn : µn,n−1, µn,n

Figure 4: Queueing network of chaining type with n agent pools. Each pool is staffed by Ni agents with service
rates given by µi,j .
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Scope and Measure

Scope:

1 We consider the limited case of a chaining network without a buffer1.

2 The routing rule is assumed to be a function of the state of all servers, symmetric
over each pool2.

3 In our test case the routing rule is taken to be a coin flip between two pools
conditioned on there being idle agents.

Quality of Service Measure:
A measure of how well the queueing network performs is needed to optimize the
system.

The blocking formulation of the current problem provides a natural Quality of Service
(QoS) measure, namely the blocking probability 3, i.e., what are the chances a newly
arrived customer finds the system fully occupied?

1Which can be compared to Erlang-B or Engset queues but in a multi-skill environment.
2It only matters which pool the server is located in, it is indifferent to the enumeration of the servers within

each pool.
3A fairness of service measure can also be defined, were different customer types get served in some fair sense.
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Mean Field: short introduction

The heuristic behind a mean-field approximation is as follows:

If the network is made up of many small4entities, “particles”, interacting in a
symmetric way, each particle can be approximated by a representative,
interacting with the mean-field.

For certain routing rules, the chaining network can be decomposed into small
components that interact through a symmetric function of the states.

From the microscopic interactions of these components, that give rise to the system
dynamics, the mean-field approximation is derived.

Replacing the inter-component interaction with a mean field greatly reduces
complexity of the problem, for N components with state space S , the system size
reduction is

|S |N → N|S|. (1)

4In this context, small means that each particle has minor influence, negligible in the large system limit, on any
other particle.
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Mean Field: short introduction

Queue length, mean and other distributional properties

Vvedenskaya, Nikita Dmitrievna and Dobrushin, Roland L’vovich and
Karpelevich, Fridrikh Izrailevich, Queueing system with selection of the shortest
of two queues: An asymptotic approach, Problemy Peredachi Informatsii, pages
20–34, volume 32, number 1, year 1996.

Vvedenskaya, Nikita D and Suhov, Yuri M, Fridrikh Izrailevich, Dobrushin’s
mean-field approximation for a queue with dynamic routing, INRIA, year 1997.

Dawson, Donald A and Tang, Jiashan and Zhao, Yiqiang Q, Balancing queues by
mean field interaction, Queueing Systems, pages 335–361, volume 49, number
3-4, year 2005.

Stolyar, Alexander L Pull-based load distribution in large-scale heterogeneous
service systems Queueing Systems, pages 341–361, volume 80, number 4, year
2015.
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Mean Field: short introduction

Large system limit dynamics

Kurtz, Thomas G Solutions of ordinary differential equations as limits of pure
jump Markov processes, Journal of applied Probability, pages 49–58, volume 7,
number 1, year 1970.

Oelschlager, Karl A martingale approach to the law of large numbers for weakly
interacting stochastic processes The Annals of Probability, pages 458–479, year
1984.

Bobbio, Andrea and Gribaudo, Marco and Telek, Miklós, Analysis of large scale
interacting systems by mean field method, QEST’08. Fifth International
Conference on Quantitative Evaluation of Systems, pages 215–224, year 2008.
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Mean Field: Decomposition of the network into particles

Consider the following part of the queuing network, the “type 1 group”:

0 N1

N2

type n

type 2

type 1

Figure 5: Arrivals to a type 1 group.

We will split this group into N1 small components, ”particles”:

0 s1

s2

Figure 6: Typical mean-field particle, where s1 ∈ N1 and s2 ∈ N2.

One type of particle per type of customer in the network.
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Mean Field: A convergence result

Let the N` particles in the type ` group take values in the finite set X = {1, . . . , d}
and let X k,N` (t) be the state of the kth particle at time t. The empirical measure
associated with the particles is

PN`
t (ω) :=

1

N`

N∑̀
k=1

δ
X k,N` (t,ω)

. (2)

The rate at which a particle changes state from i to j at time t is assumed to be

Q
N`
ij (PN`

t ).

Theorem

Assume that there is a Lipschitz function Qij such that if xN`
→ x then

Q
N`
ij (xn)→ Qij (x) and assume that PN`

0 converges in probability to some p as

N` →∞. Then (PN`
t ; t ≥ 0) converges in probability to (Pt ; t ≥ 0), the unique

solution to
Ṗt = PtQ(Pt), P0 = p. (3)
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Constructing the transition rate matrix Q

Let p`(t) denote the fraction of agents not occupied in pool ` at time t, which can be
written in terms of the empirical measure,

p`(t) :=

∫
X

1{not occupied}(x)PN`
t (dx). (4)

It is through this quantity the particles will interact! Notice the negligible influence of
the state of a single particle on p` when N` is large.

To obtain the arrival rates we need some preliminaries. Let{
λ̃` := λ`

N`+N`+1
, ` = 1, . . . , n − 1,

λ̃n := λn
Nn+N1

,
(5)

be the arrival rates per server of type ` = 1, . . . , n.

5Except for the last particle type, n, where a were arrivals can be routed to pool n or 1.
6Except for particles 1 and n.
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Under a routing rule R(p`(t)), the arrival rates to a particle at time t are

pool customer type arrival rate

` `− 1 a`,`−1 =
R(p`(t))λ̃`−1(N`−1+N`)

N`p`(t)

` ` a`,` =
R(p`(t))λ̃`(N`+N`+1)

N`p`(t)

`+ 1 ` a`+1,` =
R(p`+1(t))λ̃`(N`+N`+1)

N`+1p`+1(t)

`+ 1 `+ 1 a`+1,`+1 =
R(p`+1(t))λ̃`+1(N`+1+N`+2)

N`+1p`+1(t)

(6)

0 s ∈ N`

s ∈ N`+1

a`,`−1

a`+1,`+1

a`,`

à
,`+1

Figure 7: Arrivals to a type ` particle.
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Constructing the transition rate matrix Q

For each group, the transition rates satisfy the convergence criterion in the theorem.
For the n-group multi-particle system the transition rate matrix Q is formed by
non-communicating submatrices Qi , i = 1, . . . , n, as

Q =


Q1 0 . . . 0
0 Q2 . . . 0
...

...
. . .

...
0 0 . . . Qn

 . (7)

In the job type grouping, each server will belong to at least two particles in separate
groups. For the model to be well-defined, the probability of a server to be in a certain
state must be equal across the groups it belongs to! Therefore, there is a set of
consistency equations that must be satisfied.
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Example: 2-chain with 3 pools

Consider the chaining system with three agent pools and three customer types.

λ1 r1 N1 : µ11, µ13

λ2 r2 N2 : µ21, µ22

λ3 r3 N3 : µ32, µ33

Figure 8: Example of a queueing network of chaining type with three agent pools and corresponding staffing of
N1,N2 and N3. The service rates are given by (µ11, µ13), (µ21, µ22) and (µ32, µ33) and the arrival rates to the
system are λ1, λ2 and λ3.
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Job type grouping

q1: 0 N1

N2

q2: 0 N2

N3

q3: 0 N3

N1

Figure 9: There will be three types of mean field-particles. The arrivals are represented by arrows and the
consistency conditions are represented by dashed lines.
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QoS: Blocking Probability

An incoming customer is blocked if there are no available servers with the skill to serve
it. The Quality of Service measure will be the probability of being blocked. The
blocking probability of a type ` customer at time t can be expressed as

P
(
X

i,N`
t fully occupied for all i ∈ {1, . . . ,N`}

)
. (8)

The blocking event can not be captured by the mean-field distribution Pt .

Assume that the number of occupied servers is Po(m`t )-distributed when
p`(Pt) ≈ 1/2, where m`t := N`(1− p`(Pt)) is the number of occupied servers. The
Po(m`t ) distribution can be approximated by the normal distribution N

(
m`t ,m

`
t

)
when

N` is large.

This is not the whole picture! The distribution is confined to the domain [0,N`].
When p`(Pt) is close to 0, mass gathers around the barrier N`. Intuitively, there is a
“reflection“ at x = N`. Inspired by this, we assume a mixture model for the
distribution of the number of occupied servers

αN (m`t ,m
`
t ) + (1− α)Nrefl(m`t ,m

`
t ,N`) (9)

where α is λ`/N`-dependent.
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Numerical Experiment: Control of the QoS
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Numerical Experiment: Control of the QoS

A comparison of the mixture model with the empirical density constructed from 3000
simulations of the chaining network.

Figure 10: Right before the 1st jump when (λ1, λ2, λ3) = (45, 45, 45) and
(N1,N2,N3) = (53, 53, 53).
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Numerical Experiment: Control of the QoS

Figure 11: Right before the 2nd jump when (λ1, λ2, λ3) = (45, 47.5, 47.5) and
(N1,N2,N3) = (54, 54, 56).
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Numerical Experiment: Control of the QoS

Figure 12: Right before the 3rd jump when (λ1, λ2, λ3) = (47.5, 47.5, 47.5) and
(N1,N2,N3) = (55, 55, 56).
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Numerical Experiment: Complexity

For a fixed time interval but various pool size, we solve the mean-field approximation.
For comparison, we simulate the chaining network for the same settings.

0 500 1000 1500 2000

N

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

R
u

n
ti
m

e
 (

s
)

Mean-field approximation

0 500 1000 1500 2000

N

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
u

n
ti
m

e
 (

s
)

Simulation

Figure 13: Runtime (evaluation of QoS excluded).
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Summary and Conclusions

To the best of our knowledge, a novel approach to analyze chaining networks.

The mean-field approach could offer a fast way of controlling the QoS in a chaining
network, with excellent scaling properties.

The limiting density of occupied servers is non-trivial, and this resulted in problems
estimating the QoS. Similar problems are likely to arise when dealing with other QoS
measures.

We have not analyzed the most general chaining network. Extensions should include
waiting lines as well as other network configurations and routing rules.

λ1 r1 N1 : µ11, µ13

λ2 r2 N2 : µ21, µ22

λ3 r3 N3 : µ32, µ33

1

q1: 0 N1

N2

q2: 0 N2

N3

q3: 0 N3

N1

1

0 s ∈ N`

s ∈ N`+1

a`,`−1

a`+1,`+1

a`,`

a
`,`+1

1
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