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Let U = {—1,1} be the set of control values.

Let 20, 1] be the set of all measurable functions
u:[0,1] — U.

An element of [0, 1] is called an admissible control.

Let the state x“ be governed by the dynamics

x4(t) = /Otu(s)ds, t €10,1], u e U|0,1].

We want to minimize the cost functional

over U[0, 1].
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inf  J(u)=0.
UG;/r{][O,l] (U)

A sequence (up)n such that J(u,) — 0 can be constructed. Let

un(t) = (—1)%, ifte [:,(kjl)), 0<k<n-—1

Then |x4(t)| < n~1, which implies J(u,) < n~2. Therefore

inf  J(u)=0.
ue;/r{][O,l] (U)
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There is no u € U[0, 1] such that J(u) = 0!

J(u) = 0= x"(t) =0Vt € [0,1]. This in turn implies that
u(t) = 0 which is not in 4]0, 1].
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Example 1

There is no u € U[0, 1] such that J(u) = 0!

J(u) = 0= x"(t) =0Vt € [0,1]. This in turn implies that
u(t) = 0 which is not in 4]0, 1].

Problem: the sequence (up) has no limit in ¢[0, 1]!

Relaxed controls allows us to find a limit in a larger space. Each
u € U0, 1] with the P(U)-valued process (0,(¢); t € [0, 1])
through the map

u(t) = /U 26,0 (da)

Define gn(dt, da) := d,,(+)(da)dt € P([0,1] x U) for previously
defined u,. Does g,(dt, da) converge?
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m > mo, |p(t,a) — ¢(s,a)| < & whenever |t —s| < m™L.



Example 1

1
gn(dt, da) = ui(da)dt := 5(5,1 + 01)(da)dt

For any ¢ € Cp([0, 1] x U),

n—1 k+1
t,a)gn(dt, da) = / t,(—1)%)dt
/[wxuw( Yan(dt, da) ;ﬁ ot (~1)9)

Since [0, 1] is compact, t — ¢(t,+1) is uniformly continuous over
[0,1]. So given € > 0, there exists an mg > 0 such that for all
m > mo, |p(t,a) — ¢(s,a)| < & whenever |t —s| < m™L.

Fix m > mg and let n = 2m. We have

m—1 2J+1 2j+2

/0 o(t,a)dt = Z/ o(t, a)dt—i—ﬁﬁ: o(t,a)dt.

J= 2m
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Example 1

1
gn(dt, da) = pi(da)dt := 5(5_1 + 91)(da)dt

For each j € {0,..., m — 1}, the Mean-Value Theorem yields

2j+1 2j+2

2m 2m I
N o(t,a)dt — - o(t,a)dt <%
2m 2m

Hence, for n = 2m, we have

n—1 k+1 1 1 c
S [ ete a3 [t et et < 5
P 2 Jo 2

The case n = 2m + 1 is treated in similar fashion.
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0o Ju
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Example 1

Consider the control problem associated with P(U)-valued
processes j = (ju¢; t € [0,1]),

1
minimize  J(u) = / (x"(t))?dt
0
t
subject to  x*(t) = / aps(da)ds.
o Ju
Note that if u¢(da)dt = §,(¢)(da)dt we have J(u) = J(u).
Therefore the problem above is an extension of the original

problem.

Again inf, J(u) = 0. For pu*(da)dt := 4(5_1 + 61)(da)dt we have
x*"(t) = 0, t > 0, which implies that J(u*) = 0. Hence

inf 7 (n) = T (1)
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Moreover,
inf J(u) = inf T (1)
u ju

A candidate for the set of relaxed controls is R C P([0, 1] x U)
such that
» q(da, dt) projected on U coincides with a (F;-adapted)
P(U)-valued process p(da),
» q(da, dt) projected on [0, 1] coincides with the Lebesgue
measure dt.

Essentially: q(da, dt) = p¢(da)dt.
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with (random) probability y+(da).
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Set of relaxed controls

Let (U, d) be a separable metric space. Example suggests that the
set of admissible controls [0, T] embeds into R through the map

W u U0, T] - W(u)(dt, da) = 6,(r)(da)dt € R

Strict control: at each t we assign a fixed value u(t) € U to the
control process.

Relaxed control : at each t we randomly choose a control from U
with (random) probability y+(da).

In view of W: J(u) = T (dy) > infer T ().

In Example 1: inf,er J (1) = infueyo,1) J(u). When can we
expect this?



The full stochastic control problem

Let U, U[0, T] and R be defined in line with previous slides. Let

dx(t) = b(t,x(t), u(t))dt + o(t, x(t), u(t))dWs,
x(0) = xo.

We want to minimize

.
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The full stochastic control problem

Let U, U[0, T] and R be defined in line with previous slides. Let

dx(t) = b(t,x(t), u(t))dt + o(t, x(t), u(t))dWs,
x(0) = xo.

We want to minimize

r T
J(u)=E /0 F(t,x(t), u(t))dt + h(X(T))} Cueu, T

The relaxed cost functional is

J(uw) =E / / (t, x(t), a)pe(da)dt + h(x(T))] , LER.

Standing assumption: b, o, f, h are bounded and continuous in

(x, u).



Strong vs weak solutions of the dynamics

We can solve the dynamics in a strong (pathwise) or a weak
(distributional) sense.

Strong solution:

Given a filtered probability space (Q, F,(F; t € [0, T]),P), an
Fi-adapted standard Wiener process W, an admissible control
u € U[0,1] and an initial value xp, an F;-adapted continuous
process (x(t); t € [0,1]) is a strong solution if

x(t) :Xo—i-/otb(s x(s), u(s ))ds—i—/ot (s,x(s),u(s))dWs, P—a.s.

together with some integrability of the coefficients.



Strong vs weak solution of the dynamics

We can solve the dynamics in a strong (pathwise) or a weak
(distributional) sense.

Weak control:
The tuple (Q, F, (F¢),P, W, u, x) is called a weak control if

> (Q,F,(Ft),P) is a filtered probability space
> uis a Fi-adapted U-valued process.

> x is and F-adapted and continuous process such that
x(0) = xo and

M?(t) := ¢ (x(t)) — »(x(0)) - /Ot Lsp(x(s))ds

is a P-martingale for each ¢ € C2(R).
Here, LY is infinitesimal generator associated to the the dynamics

Lo(x) = 207(t,x,u)e"(x) + b(t, x 1) ().



Strong vs weak relaxation of the dynamics

The two types of solution suggest two types of relaxation.

Strong relaxation:
Integrate the coefficients b and o against the relaxed control

pe(da),
x(t) —xo+/ / s, x(s), a)ps(da)ds

; /0 /U o(s,x(s), a)ps(da)dW,s



Strong vs weak relaxation of the dynamics

The two types of solution suggest two types of relaxation.

Weak relaxed control:
The tuple (2, F, (Ft), P, W, i, x) is called a weak control if

> (Q,F,(Ft),P) is a filtered probability space

> pis a Fi-adapted P(U)-valued process such that Iig ¢ptt is
Fi-measurable.

» x is and F;-adapted and continuous process such that
x(0) = xp and

M (1) = p(x(£)) — $(x(0)) - / ] Letxos(da)es

is a P-martingale for each ¢ € C2(R).

Here, LY is infinitesimal generator associated to the the dynamics



Young measure

Assume that the sequence (u,), of Fi-predictable and U-
valued controls is uniformly integrable,

T
lim supE |:/ ’un(t)’]l{|un(t)|>c}dt:| =0.
0

c—00 g

Then there exists a subsequence (up,); of (us)n and, for a.e.
t € [0, T], a random probability measure ¢ on U such that

5unj(t)(da)dt converges weakly to u:(da)dt, P — a.s.

The process (ut(da); t € [0, T]) is called the family of Young
measures associated with the subsequence (up,);.




Young measure

A more restricted situation:

Assume that U is a convex and compact subset of RY. Then
there for all relaxed controls pu:(da)dt there exists a strict
control u such that

/Ot/uaﬂs(da)ds = /Ot u(s)ds, tel[0,T], P—as.




Chattering Lemma

Young measure: get relaxed control from sequence of strict
controls.

Chattering Lemma is a result in the other direction.
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Assume that U is a compact set. Let (u¢) be a predictable
P(U)-valued process. Then there exists a sequence (up(t))n
of predictable U-valued processes such that

Oun(t)(da)dt = pe(da)dt, P —as.




Chattering Lemma

Young measure: get relaxed control from sequence of strict
controls.

Chattering Lemma is a result in the other direction.

Assume that U is a compact set. Let (u¢) be a predictable
P(U)-valued process. Then there exists a sequence (up(t))n
of predictable U-valued processes such that

Oun(t)(da)dt = pe(da)dt, P —as.

Can it be so that with Chattering Lemma and some continuity of
J, we have inf er J (1) > inf cyqo, 11 J(u)?



Example 2

Let U = {—1,1} and consider the following problem
minimize  J(u) = E [h(x(1))]

t
subject to  x(t) = xo +/ u(s)dWs.
0

where h is some smooth function. Since v € {—1,1}, (x); =t and
x(t) — xo is a standard Wiener process. Therefore

t
g(t,x0) = uegl[g’l]E [h(xo +/0 u(s)dWs)]

satisfies the heat equation

og 10%g
E(t,x) = *T(t,x), 8(0,x) = h(x).



Example 2

The heat equation impIies that g(t,x) # h(x),t > 0. Consider the
relaxed control 1i¢(da) = 1(6_1(da) + d1(da)). The strongly
relaxed control is

t):x0+/ol/uaus(da)dWs=X0+/01;(—1+1)dWs:xo,
So
T() = [ 0+ / [ anc(amyam,) ] — E [h(x0)] = h(x0)

and



Example 3: U ={ay,...,a,}

Every relaxed control p:(da)dt is a convex combination of Dirac
measures on the elements of U,

pe(da)dt =~ 6, (da)dt, (1)
i=1

cl is a [0, 1]-valued process and Y7, ci = 1.
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i=1

— [ Lso(x(s))ds where
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Example 2: U = {al, . an}
Note that M#(t) = [; d<p(x — [ Lso(x(s))ds where

s))ds = Z cib(s,x(s), ai)¢' (x(s))ds
i=1
+ Z CS’%UU*(S, x(s),a;)¢" (x(s))ds (3)
i=1

dip(x(s)) = ¢'(x(s))dx(s) + %w”(X(S))d (x)s

For the strong relaxation,

Zcbsx ds—I—ansx(s)a)dWs

i=1

2 (4)
d(x)s = (Z clo(s, x(s), a,-)) ds
i=1



A characterization of the weakly relaxed process

Def: Orthogonal martingale measure

The random function m : Q x [0, T] x U is a continuous
martingale measure with covariance measure v : [0, T] x U X

U if
» m(-, A) is a continuous square-integrable martingale for
all A e B(U),
» the process
m(t,A)m(t, B) —/ v(dt,dx,dy)  (5)
[0,t]xAxB

is a martingale. If v is supported on the diagonal of the
set U x U, i.e. v(dt,dx,dy) = dx(dy)v(dx, dt), then m
is an orthogonal martingale measure with intensity v.




A characterization of the weakly relaxed process

Let IP be the solution to relaxed martingale problem. Then P
is the probability law of x satisfying

dx(t) = /U b(t, x(t), 3)jue(da)dt + /U o (£, x(t), 3)m(dt, da)
(6)

where mis an orthogonal continuous martingale measure with
intensity u:(da)dt.




A characterization of the weakly relaxed process

Let m be a continous orthogonal martingale-measure with
intensity u:(da)dt. Then there exists a Wiener process W
and a sequence of predictable U-valued processes (up,) such
that for all continuous and bounded ¢ : U — R and for all
te0,T]

lim E

n—o0

(mt(so) =~/ tso(u,,(s))dvvs)z] —0 ()

where me() = [5 [, ¢(a)m(ds, da).




A characterization of the weakly relaxed process

For the strongly relaxed dynamics, the martingale measure is

t
m(t, A) = /O /A J1s(da)dWs
t L e
0o Jai 0 =1

The quadratic variation process is not supported only on the
diagonal of U x U!

(8)

v(dt, da, db) = pe(da)ue(db)dt (9)



Example 2: U ={ay,...,a,}

Candidate orthogonal martingale measure:

m(t, A) /Z[ﬂaeAdW' (10)

Indeed,

n

v(dt, da, db) = 6,(db) 3 /cid,(da)dt (11)

i=1

:,ut(da)dt

Thus the weakly relaxed dynamics are

dx(t):/Ub(t,x(t),a),ut(da)dtJr/ o(t,x(t),a)m(dt, da)

v

=3 bt x(e), ap)cide + 3 o(t, x(t), a)y cldw
i=1 i=1

(12)



Conclusions

Summary:

> imcueUJ(u) = inquR j(ﬂ)
» Weak relaxation preserves convergence



Conclusions

Summary:

> infycy J(u) =infer T (1)

» Weak relaxation preserves convergence
Further applications of relaxed control

» Decision theory (posterior risk)

» Game theory (mixed strategies)
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