Stochastic Dynamic Graphon Games The Linear-Quadratic Case

Alexander Aurell¹

¹ORFE, Princeton University aaurell@princeton.edu

Introduction to Mean Field Games and Applications ISMI June 22, 2021 *"Stochastic Graphon Games: II. The Linear-Quadratic Case"* A., Carmona, Laurière, arXiv 2021.

- $\rightarrow\,$ The graphon game: A limit model for a class of linear-quadratic stochastic games with non-identical players
- \rightarrow Convergence analysis

"Finite State Graphon Games with Applications to Epidemics" A., Carmona, Dayanıklı, Laurière, arXiv 2021.

Introductory example

N-player game with weak interaction (Carmona, Fouque, Sun '13)

$$\begin{split} \min_{\alpha^{k}} \mathbb{E} \left[\int_{0}^{T} \frac{1}{2} (\alpha_{t}^{k})^{2} - q \alpha_{t}^{k} \frac{1}{N} \sum_{j=1}^{N} (X_{t}^{j} - X_{t}^{k}) + \frac{\varepsilon}{2} \left(\frac{1}{N} \sum_{j=1}^{N} (X_{t}^{j} - X_{t}^{k}) \right)^{2} dt + g(X_{T}^{k}) \right] \\ dX_{t}^{k} &= a \left(\frac{1}{N} \sum_{j=1}^{N} (X_{t}^{j} - X_{t}^{k}) + \alpha_{t}^{k} \right) dt + \sigma dW_{t}^{k}, \quad k = 1, \dots, N \end{split}$$

N-player game with weak interaction (Carmona, Fouque, Sun '13)

$$\begin{split} \min_{\alpha^{k}} \mathbb{E}\left[\int_{0}^{T} \frac{1}{2} (\alpha_{t}^{k})^{2} - q \alpha_{t}^{k} \frac{1}{N} \sum_{j=1}^{N} (X_{t}^{j} - X_{t}^{k}) + \frac{\varepsilon}{2} \left(\frac{1}{N} \sum_{j=1}^{N} (X_{t}^{j} - X_{t}^{k})\right)^{2} dt + g(X_{T}^{k}) \right] \\ dX_{t}^{k} &= a \left(\frac{1}{N} \sum_{j=1}^{N} (X_{t}^{j} - X_{t}^{k}) + \alpha_{t}^{k}\right) dt + \sigma dW_{t}^{k}, \quad k = 1, \dots, N \end{split}$$

The interaction term is the average log-monetary reserve difference:

$$\frac{1}{N}\sum_{i=1}^{N}(X_t^j-X_t^i).$$

"... representing the rate at which bank i borrows from or lends to bank j."

N-player game with weak interaction (Carmona, Fouque, Sun '13)

$$\begin{split} \min_{\alpha^k} \mathbb{E}\left[\int_0^T \frac{1}{2} (\alpha_t^k)^2 - q \alpha_t^k \frac{1}{N} \sum_{j=1}^N (X_t^j - X_t^k) + \frac{\varepsilon}{2} \left(\frac{1}{N} \sum_{j=1}^N (X_t^j - X_t^k)\right)^2 dt + g(X_T^k)\right] \\ dX_t^k &= a \left(\frac{1}{N} \sum_{j=1}^N (X_t^j - X_t^k) + \alpha_t^k\right) dt + \sigma dW_t^k, \quad k = 1, \dots, N \end{split}$$

The interaction term is the average log-monetary reserve difference:

$$\frac{1}{N}\sum_{i=1}^{N}(X_t^j-X_t^i).$$

"... representing the rate at which bank i borrows from or lends to bank j."

What if there is a distinguishing feature, impacting the interaction, such as ...?

... geography. Neighbouring banks interact more than distant banks.

Introductory example: MFG for systemic risk

... geography. Neighbouring banks interact more than distant banks.

A very simple geography:

- \rightarrow each bank is **geographically labeled**, bank k by $x_k \in I := [0, 1]$
- \rightarrow weights $w: I \times I \mapsto [0, 1]$, symmetric
 - x_k and x_j geographical close $\Rightarrow w(x_k, x_j)$ is large
 - x_k and x_j distant $\Rightarrow w(x_k, x_j)$ is small

Introductory example: MFG for systemic risk

... geography. Neighbouring banks interact more than distant banks.

A very simple geography:

 \rightarrow each bank is **geographically labeled**, bank k by $x_k \in I := [0, 1]$

 \rightarrow weights $w: I \times I \mapsto [0, 1]$, symmetric

- x_k and x_j geographical close $\Rightarrow w(x_k, x_j)$ is large
- x_k and x_j distant $\Rightarrow w(x_k, x_j)$ is small

Instead of $\frac{1}{N} \sum_{j=1}^{N} (X_t^j - X_t^k)$, player k now "feels" the weighted aggregate

$$Z^{k,N}_t := rac{1}{N}\sum_{j=1}^N w(x_k,x_j)(X^j_t-X^k_t)$$

Introductory example: MFG for systemic risk

... geography. Neighbouring banks interact more than distant banks.

A very simple geography:

 \rightarrow each bank is **geographically labeled**, bank k by $x_k \in I := [0, 1]$

- \rightarrow weights $w: I \times I \mapsto [0, 1]$, symmetric
 - x_k and x_j geographical close $\Rightarrow w(x_k, x_j)$ is large
 - x_k and x_j distant $\Rightarrow w(x_k, x_j)$ is small

Instead of $\frac{1}{N} \sum_{j=1}^{N} (X_t^j - X_t^k)$, player k now "feels" the weighted aggregate

$$Z_t^{k,N} := \frac{1}{N} \sum_{j=1}^N w(x_k, x_j) (X_t^j - X_t^k)$$

N-player game for systemic risk with non-identical players

$$\min_{\alpha^{k}} \mathbb{E}\left[\int_{0}^{T} \frac{1}{2} (\alpha_{t}^{k})^{2} - q \alpha_{t}^{k} Z_{t}^{k,N} + \frac{\varepsilon}{2} \left(Z_{t}^{k,N}\right)^{2} dt + g(X_{T}^{k})\right]$$
$$dX_{t}^{k} = a \left(Z_{t}^{k,N} + \alpha_{t}^{k}\right) dt + \sigma dW_{t}^{k}$$

Limit model with infinitesimal agents

Drawing inspiration from economic theory:

- \rightarrow If the agent (index) space is an **atomless probability space** (I, I, λ) then each individual agent has no influence.
- $\rightarrow\,$ Aggregates are averages over the agent space (cf. expectations)
- \rightarrow Agents are exposed to **idiosyncratic shocks** (independent noise)

Limit model with infinitesimal agents

Drawing inspiration from economic theory:

- \rightarrow If the agent (index) space is an **atomless probability space** (I, I, λ) then each individual agent has no influence.
- \rightarrow Aggregates are averages over the **agent space** (cf. expectations)
- \rightarrow Agents are exposed to idiosyncratic shocks (independent noise)

A candidate continuum limit model

$$\begin{split} \min_{\alpha^{x}} \mathbb{E}\left[\int_{0}^{T} \frac{1}{2} (\alpha_{t}^{x})^{2} - q \alpha_{t}^{x} Z_{t}^{x} + \frac{\varepsilon}{2} (Z_{t}^{x})^{2} dt + g(X_{T}^{x})\right] \\ dX_{t}^{x} &= a(Z_{t}^{x} + \alpha_{t}^{x}) dt + \sigma dW_{t}^{x}, \quad t \in [0, T], \ x \in I \\ Z_{t}^{x} &= \int_{I} w(x, y) (X_{t}^{y} - X_{t}^{x}) dy, \quad t \in [0, T], \ x \in I \end{split}$$

Limit model with infinitesimal agents

Drawing inspiration from economic theory:

- \rightarrow If the agent (index) space is an **atomless probability space** (I, I, λ) then each individual agent has no influence.
- \rightarrow Aggregates are averages over the agent space (cf. expectations)
- \rightarrow Agents are exposed to idiosyncratic shocks (independent noise)

A candidate continuum limit model

$$\begin{split} \min_{\alpha^{x}} \mathbb{E}\left[\int_{0}^{T} \frac{1}{2} (\alpha_{t}^{x})^{2} - q \alpha_{t}^{x} Z_{t}^{x} + \frac{\varepsilon}{2} (Z_{t}^{x})^{2} dt + g(X_{T}^{x})\right] \\ dX_{t}^{x} &= a (Z_{t}^{x} + \alpha_{t}^{x}) dt + \sigma dW_{t}^{x}, \quad t \in [0, T], \ x \in I \\ Z_{t}^{x} &= \int_{I} w(x, y) (X_{t}^{y} - X_{t}^{x}) dy, \quad t \in [0, T], \ x \in I \end{split}$$

(Q1) Is the (linear-quadratic) limit model well defined?(Q2) Can we compute and approximate Nash equilibria?

The candidate limit model is building on the Brownian motion vector $(B^{x})_{x \in I}$.

Measurability problems when λ is the Lebesgue measure

- → For an iid Brownian motion $(B^x)_{x \in I}$ based on the usual continuum product via Kolmogorov construction: almost all sample functions $x \mapsto B^x(\omega)$ are essentially equal to an *arbitrarily* given function $x \mapsto \beta^x$ on [0, 1].
- $\rightarrow\,$ A process like that is not measurable in the index problem defining aggregates!

Relating back to the motivating example:

 \rightarrow Interaction term is the aggregate $\int_{I} w(x, y) (X_t^y - X_t^x) dy$

 \rightarrow y \mapsto X^y_t is a priori not dy-measurable!

"Stochastic Graphon Games: II. The Linear-Quadratic Case" A., Carmona, Lauriére, arXiv 2021.

- $\rightarrow\,$ The graphon game: A limit model for linear-quadratic stochastic games with non-identical players
 - Measurability problems addressed with Fubini extension theory
 - (Linear) Graphon SDE
 - Nash equilibria for LQ Graphon games
- \rightarrow Convergence analysis

"Finite State Graphon Games with Applications to Epidemics" A., Carmona, Dayanıklı, Lauriére, arXiv 2021.

- \rightarrow Finite state graphon games
 - Pure-jump Graphon SDE
 - Applications to epidemiology

The Linear Graphon SDE System

We will consider the following "linear SDE" system: given an admissible strategy profile $\underline{\alpha} \in \underline{A}$ (open-loop; decentralized; progressive; square integrable)

$$\begin{cases} dX_t^x = \left(a(x)X_t^x + b(x)\alpha_t^x + c(x)Z_t^x\right)dt + dB_t^x, & t \in [0, T], \ x \in I\\ Z_t^x = \int_I w(x, y)X_t^y\lambda(dy), & t \in [0, T], \ x \in I,\\ X_0^x = \xi^x \end{cases}$$

We will consider the following "linear SDE" system: given an admissible strategy profile $\underline{\alpha} \in \underline{A}$ (open-loop; decentralized; progressive; square integrable)

$$\begin{cases} dX_t^x = \left(a(x)X_t^x + b(x)\alpha_t^x + c(x)Z_t^x\right)dt + dB_t^x, & t \in [0, T], \ x \in I\\ Z_t^x = \int_I w(x, y)X_t^y\lambda(dy), & t \in [0, T], \ x \in I,\\ X_0^x = \xi^x \end{cases}$$

The graphon w

- ightarrow is a symmetric measurable function from I imes I to [0,1]
- \rightarrow induces a Hilbert-Schmidt operator $W: L^2(I) \rightarrow L^2(I)$
- \rightarrow W can be extended to $L^2_{\lambda}(I)$ (and beyond)

We will consider the following "linear SDE" system: given an admissible strategy profile $\underline{\alpha} \in \underline{A}$ (open-loop; decentralized; progressive; square integrable)

$$\begin{cases} dX_t^x = \left(a(x)X_t^x + b(x)\alpha_t^x + c(x)Z_t^x\right)dt + dB_t^x, & t \in [0, T], \ x \in I\\ Z_t^x = \int_I w(x, y)X_t^y\lambda(dy), & t \in [0, T], \ x \in I,\\ X_0^x = \xi^x \end{cases}$$

(Q1) Is the (linear-quadratic) limit model well defined?

Is there a suitable probability space over $\Omega \times \mathit{I}$ where we can

- \rightarrow define the idiosyncratic noise $(B^{\times})_{x\in I}$ so that
- ightarrow the aggregates $(Z^{\scriptscriptstyle X}_t)_{\scriptscriptstyle X\in I}$ are well-defined and
- \rightarrow in which we can solve the system (1) is a strong sense?

Theory developed by (Sun '98, '06; Sun, Zhang '09) and others.

Theory developed by (Sun '98, '06; Sun, Zhang '09) and others.

Guarantees the existence of a probability space ($\Omega\times \mathit{I},\mathcal{W},\mathbb{Q})$

 \rightarrow extending ($\Omega \times I, \mathcal{F} \otimes \mathcal{I}, \mathbb{P} \otimes \lambda$)

Theory developed by (Sun '98, '06; Sun, Zhang '09) and others.

Guarantees the existence of a probability space $(\Omega \times I, \mathcal{W}, \mathbb{Q})$

- \rightarrow extending $(\Omega \times I, \mathcal{F} \otimes \mathcal{I}, \mathbb{P} \otimes \lambda)$
- $\rightarrow\,$ where the agent space ($I,\mathcal{I},\lambda)$
 - 1. is atomless
 - 2. extends the Lebesgue space $(I, \mathcal{B}(I), \text{Leb}(I))$

Theory developed by (Sun '98, '06; Sun, Zhang '09) and others.

Guarantees the existence of a probability space $(\Omega \times I, \mathcal{W}, \mathbb{Q})$

- \rightarrow extending $(\Omega \times I, \mathcal{F} \otimes \mathcal{I}, \mathbb{P} \otimes \lambda)$
- ightarrow where the agent space (I, \mathcal{I}, λ)
 - 1. is atomless
 - 2. extends the Lebesgue space $(I, \mathcal{B}(I), \text{Leb}(I))$
- \rightarrow with the Fubini property

Theory developed by (Sun '98, '06; Sun, Zhang '09) and others.

Guarantees the existence of a probability space $(\Omega \times I, \mathcal{W}, \mathbb{Q})$

- \rightarrow extending $(\Omega \times I, \mathcal{F} \otimes \mathcal{I}, \mathbb{P} \otimes \lambda)$
- ightarrow where the agent space (I, \mathcal{I}, λ)
 - 1. is atomless
 - 2. extends the Lebesgue space $(I, \mathcal{B}(I), \text{Leb}(I))$
- $\rightarrow\,$ with the Fubini property

 \rightarrow carrying an essentially pairwise independent Brownian motion vector $(B^{\times})_{x \in I}$

for λ -a.e. $x \in I$ B^x is independent of B^y for λ -a.e. $y \in I$

To emphasize the Fubini property (\mathbb{Q} disintegrates with marginals \mathbb{P} and λ) we write

 $(\Omega \times I, \mathcal{F} \boxtimes \mathcal{I}, \mathbb{P} \boxtimes \lambda) := (\Omega \times I, \mathcal{W}, \mathbb{Q})$

We will denote L^2 -spaces over the Fubini extension by L^2_{\boxtimes} , expectation by \mathbb{E}^{\boxtimes} .

To emphasize the Fubini property (\mathbb{Q} disintegrates with marginals \mathbb{P} and λ) we write

$$(\Omega \times I, \mathcal{F} \boxtimes \mathcal{I}, \mathbb{P} \boxtimes \lambda) := (\Omega \times I, \mathcal{W}, \mathbb{Q})$$

We will denote L^2 -spaces over the Fubini extension by L^2_{\boxtimes} , expectation by \mathbb{E}^{\boxtimes} .

Theorem (Exact Law of Large Numbers)

Let f be a process from $(\Omega \times I, \mathcal{F} \boxtimes \mathcal{I}, \mathbb{P} \boxtimes \lambda)$ to the Polish space S. If $(f^{\times})_{x \in I}$ are e.p.i., then $\lambda \circ [f^{\cdot}(\omega)]^{-1} = (\mathbb{P} \boxtimes \lambda) \circ [f^{\cdot}(\cdot)]^{-1}$, \mathbb{P} -a.s.

To emphasize the Fubini property (\mathbb{Q} disintegrates with marginals \mathbb{P} and λ) we write

$$(\Omega imes I, \mathcal{F} oxtimes \mathcal{I}, \mathbb{P} oxtimes \lambda) := (\Omega imes I, \mathcal{W}, \mathbb{Q})$$

We will denote L^2 -spaces over the Fubini extension by L^2_{\boxtimes} , expectation by \mathbb{E}^{\boxtimes} .

Theorem (Exact Law of Large Numbers)

Let f be a process from $(\Omega \times I, \mathcal{F} \boxtimes \mathcal{I}, \mathbb{P} \boxtimes \lambda)$ to the Polish space S. If $(f^{x})_{x \in I}$ are e.p.i., then $\lambda \circ [f^{\cdot}(\omega)]^{-1} = (\mathbb{P} \boxtimes \lambda) \circ [f^{\cdot}(\cdot)]^{-1}$, \mathbb{P} -a.s.

Corollary: if *f* is furthermore $\mathbb{P} \boxtimes \lambda$ -integrable:

$$\int_{A} f^{x}(\omega)\lambda(dx) = \int_{A} \mathbb{E}[f^{x}]\lambda(dx), \quad A \in \mathcal{I}, \ \mathbb{P}\text{-a.s.}$$

"Complete removal of individual uncertainty", "Insurable risk"

To emphasize the Fubini property (\mathbb{Q} disintegrates with marginals \mathbb{P} and λ) we write

$$(\Omega imes I, \mathcal{F} oxtimes \mathcal{I}, \mathbb{P} oxtimes \lambda) := (\Omega imes I, \mathcal{W}, \mathbb{Q})$$

We will denote L^2 -spaces over the Fubini extension by L^2_{\boxtimes} , expectation by \mathbb{E}^{\boxtimes} .

Theorem (Exact Law of Large Numbers) Let f be a process from $(\Omega \times I, \mathcal{F} \boxtimes \mathcal{I}, \mathbb{P} \boxtimes \lambda)$ to the Polish space S. If $(f^x)_{x \in I}$ are *e.p.i., then* $\lambda \circ [f^{\cdot}(\omega)]^{-1} = (\mathbb{P} \boxtimes \lambda) \circ [f^{\cdot}(\cdot)]^{-1}$, \mathbb{P} -a.s.

Corollary: if *f* is furthermore $\mathbb{P} \boxtimes \lambda$ -integrable:

$$\int_{A} f^{x}(\omega)\lambda(dx) = \int_{A} \mathbb{E}[f^{x}]\lambda(dx), \quad A \in \mathcal{I}, \ \mathbb{P}\text{-a.s.}$$

"Complete removal of individual uncertainty", "Insurable risk"

 $\frac{\text{Example}}{\text{Since } (B_t^x)_{x \in I} \text{ are e.p.i. and integrable}}$

$$\int_{A} B_t^{\mathsf{x}}(\omega)\lambda(d\mathsf{x}) = \int_{A} \mathbb{E}[B_t^{\mathsf{x}}]\lambda(d\mathsf{x}) = 0, \quad \mathbb{P}\text{-a.s.}, \quad A \in \mathcal{I}, \ t \in [0, T].$$

The Linear Graphon SDE System

With $(B^{x})_{x \in I}$ and λ as introduced in the discussion above

$$\begin{cases} dX_t^{\times} = \left(a(x)X_t^{\times} + b(x)\alpha_t^{\times} + c(x)Z_t^{\times}\right)dt + dB_t^{\times}, & t \in [0, T], \ x \in I \\ Z_t^{\times} = \int_I w(x, y)X_t^{y}\lambda(dy), & t \in [0, T], \ x \in I, \end{cases}$$
(1)
$$X_0^{\times} = \xi^{\times}$$

The Linear Graphon SDE System

With $(B^{x})_{x \in I}$ and λ as introduced in the discussion above

$$\begin{cases} dX_t^x = \left(a(x)X_t^x + b(x)\alpha_t^x + c(x)Z_t^x\right)dt + dB_t^x, & t \in [0, T], \ x \in I\\ Z_t^x = \int_I w(x, y)X_t^y\lambda(dy), & t \in [0, T], \ x \in I, \\ X_0^x = \xi^x \end{cases}$$
(1)

Theorem (A., Carmona, Laurière)

Let $a, b, c : I \to \mathbb{R}$ be \mathcal{I} -measurable and bounded. For each admissible strategy profile α (open-loop, decentralized, progressive, square-integrable):

- \rightarrow There exists a unique solution X to (1) (in L^2_{\boxtimes} -sense)
- \rightarrow The aggregate Z is almost surely deterministic:

 $\mathbb{P} \boxtimes \lambda \left(\|Z - f\|_{\mathcal{T}} = 0 \right) = 1, \quad f(\omega, x) := \widetilde{f}(x), \ \widetilde{f} \in L^2_\lambda(I; \mathcal{C}) \quad (\omega, x) \in \Omega \times I.$

→ There is a version of X that solves (1) for all $x \in I$ (in L²-sense) and of Z that is deterministic for all $x \in I$.

Take-aways from the theorem:

- \rightarrow We can replace Z_t^x with the **deterministic aggregate** $\int_I w(x, y) \mathbb{E}[X_t^y] \lambda(dy)$
- → or $\int_{I} w(x, y) \mathbb{E}[X_t^y] dy$ if $y \mapsto \mathbb{E}[X_t^y]$ is $\mathcal{B}(I)$ -measurable (depends on assumptions on ξ , a, b, c)

Take-aways from the theorem:

- \rightarrow We can replace Z_t^x with the **deterministic aggregate** $\int_I w(x, y) \mathbb{E}[X_t^y] \lambda(dy)$
- → or $\int_{I} w(x, y) \mathbb{E}[X_t^y] dy$ if $y \mapsto \mathbb{E}[X_t^y]$ is $\mathcal{B}(I)$ -measurable (depends on assumptions on ξ , a, b, c)
- \rightarrow We can solve the Graphon SDE "*x*-by-*x*" (compared to an L^2_{\boxtimes} sense)

$$J^{x}(\beta;\underline{\alpha}) := \mathbb{E}\Big[\int_{0}^{T} f^{x}(X_{t}^{x},\beta_{t},Z_{t}^{x})dt + h^{x}(X_{T}^{x},Z_{T}^{x})\Big],$$

$$dX_{t}^{x} = \Big(a(x)X_{t}^{x} + b(x)\beta_{t} + c(x)Z_{t}^{x}\Big)dt + dB_{t}^{x}, X_{0}^{x} = \xi^{x},$$

$$Z_{t}^{x} = \int_{I} w(x,u)\mathbb{E}[X_{t}^{u}]\lambda(du), \ u \in I, \ t \in [0,T]$$

$$dX_{t}^{y} = \Big(a(y)X_{t}^{y} + b(y)\alpha_{t}^{y} + c(y)Z_{t}^{y}\Big)dt + dB_{t}^{y}, \ X_{0}^{y} = \xi^{y}, \ y \neq x,$$

$$J^{x}(\beta;\underline{\alpha}) := \mathbb{E}\Big[\int_{0}^{T} f^{x}(X_{t}^{x},\beta_{t},Z_{t}^{x})dt + h^{x}(X_{T}^{x},Z_{T}^{x})\Big],$$

$$dX_{t}^{x} = \Big(a(x)X_{t}^{x} + b(x)\beta_{t} + c(x)Z_{t}^{x}\Big)dt + dB_{t}^{x}, X_{0}^{x} = \xi^{x},$$

$$Z_{t}^{x} = \int_{I} w(x,u)\mathbb{E}[X_{t}^{u}]\lambda(du), \ u \in I, \ t \in [0,T]$$

$$dX_{t}^{y} = \Big(a(y)X_{t}^{y} + b(y)\alpha_{t}^{y} + c(y)Z_{t}^{y}\Big)dt + dB_{t}^{y}, \ X_{0}^{y} = \xi^{y}, \ y \neq x,$$

 $\rightarrow\,$ Strategy profile $\underline{\alpha}$ appears only in the aggregate

$$J^{x}(\beta;\underline{\alpha}) := \mathbb{E}\Big[\int_{0}^{T} f^{x}(X_{t}^{x},\beta_{t},Z_{t}^{x})dt + h^{x}(X_{T}^{x},Z_{T}^{x})\Big],$$

$$dX_{t}^{x} = \Big(a(x)X_{t}^{x} + b(x)\beta_{t} + c(x)Z_{t}^{x}\Big)dt + dB_{t}^{x}, X_{0}^{x} = \xi^{x},$$

$$Z_{t}^{x} = \int_{I} w(x,u)\mathbb{E}[X_{t}^{u}]\lambda(du), \ u \in I, \ t \in [0,T]$$

$$dX_{t}^{y} = \Big(a(y)X_{t}^{y} + b(y)\alpha_{t}^{y} + c(y)Z_{t}^{y}\Big)dt + dB_{t}^{y}, \ X_{0}^{y} = \xi^{y}, \ y \neq x,$$

- $\rightarrow\,$ Strategy profile $\underline{\alpha}$ appears only in the aggregate
- \rightarrow Aggregate insensitive to changing one strategy (λ atomless)

$$J^{x}(\beta;\underline{\alpha}) := \mathbb{E}\Big[\int_{0}^{T} f^{x}(X_{t}^{x},\beta_{t},Z_{t}^{x})dt + h^{x}(X_{T}^{x},Z_{T}^{x})\Big],$$

$$dX_{t}^{x} = \Big(a(x)X_{t}^{x} + b(x)\beta_{t} + c(x)Z_{t}^{x}\Big)dt + dB_{t}^{x}, X_{0}^{x} = \xi^{x},$$

$$Z_{t}^{x} = \int_{I} w(x,u)\mathbb{E}[X_{t}^{u}]\lambda(du), \ u \in I, \ t \in [0,T]$$

$$dX_{t}^{y} = \Big(a(y)X_{t}^{y} + b(y)\alpha_{t}^{y} + c(y)Z_{t}^{y}\Big)dt + dB_{t}^{y}, \ X_{0}^{y} = \xi^{y}, \ y \neq x,$$

- $\rightarrow\,$ Strategy profile $\underline{\alpha}$ appears only in the aggregate
- ightarrow Aggregate insensitive to changing one strategy (λ atomless)
- \rightarrow We write $J^{x}(\beta; \underline{\alpha})$ as $\mathcal{J}^{x}(\beta; Z^{x})$

Definition (Nash equilibrium)

An admissible strategy profile $\underline{\hat{\alpha}}$ is a graphon game Nash equilibrium if

$$\mathcal{J}^{x}(\hat{\alpha}^{x}; Z^{\underline{\hat{\alpha}};x}) \leq \mathcal{J}^{x}(\beta; Z^{\underline{\hat{\alpha}};x}), \quad \beta \in \mathcal{A}(x), \ x \in I$$

where $\mathcal{A}(x)$ is the set of decentralized, open-loop, progressive, square-integrable processes.

Pontryagin Stochastic Maximum Principle

If $\underline{\hat{\alpha}}$ is a graphon game Nash equilibrium then

$$\hat{\alpha}_t^{\scriptscriptstyle X} \in \argmin_{u \in \mathbb{R}} \, H^{\scriptscriptstyle X}(t, \hat{X}_t^{\scriptscriptstyle X}, u, \rho_t^{\scriptscriptstyle X}), \quad \text{a.e.} \ t \in [0, T], \ \mathbb{P}\text{-a.s},$$

for each $x \in I$, with (\hat{X}^x, p^x, q^x) solving the Hamiltonian system

$$\begin{cases} d\hat{X}_t^x = \partial_p H^x(t, \hat{X}_t^x, \hat{\alpha}_t^x, p_t^x) dt + dB_t^x, & \hat{X}_0^x = \xi^x, \\ dp_t^x = -\partial_\chi H^x(t, \hat{X}_t^x, \hat{\alpha}_t^x, p_t^x) dt + q_t^x dB_t^x, & p_T^x = \partial_\chi h^x(\hat{X}_T^x, \hat{Z}_T^x), \end{cases}$$

where $H^{x} : [0, T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is the **Hamiltonian** of player *x*,

$$\begin{aligned} H^x(t,\chi,u,p) &= f^x(\chi,u,\hat{Z}_t^x) + (a(x)\chi + b(x)u + c(x)\hat{Z}_t^x)p, \end{aligned}$$

and \hat{Z}_t^x is the aggregate of \hat{X}_t^\cdot : $\hat{Z}_t^x &= \int_I w(x,y)\mathbb{E}[\hat{X}_t^y]\lambda(dy). \end{aligned}$

Sufficient condition when: $(\chi, u) \mapsto (f^{*}(\chi, u, z), h^{*}(\chi, z))$ is jointly convex for $z \in \mathbb{R}$.

Linear-quadratic type assumptions:

- $\rightarrow f, h$ quadratic functions
- $\rightarrow a, b, c, f, h$ such that some Riccati equations are solvable

Then the Hamiltonian system (FBSDE) from the Pontryagin SMP

$$\begin{split} d\hat{X}_t^x &= \partial_p H^x(t, \hat{X}_t^x, \hat{\alpha}_t^x, p_t^x) dt + dB_t^x, \qquad \hat{X}_0^x = \xi^x, \\ dp_t^x &= -\partial_\chi H^x(t, \hat{X}_t^x, \hat{\alpha}_t^x, p_t^x) dt + q_t^x dB_t^x, \qquad p_T^x = \partial_\chi h^x(\hat{X}_T^x, \hat{Z}_T^x), \\ H^x(t, \chi, u, p) &= f^x(\chi, u, \hat{Z}_t^x) + (a(x)\chi + b(x)u + c(x)\hat{Z}_t^x)p, \\ \hat{Z}_t^x &= \int_I w(x, y) \mathbb{E}[\hat{X}_t^y] \lambda(dy) \end{split}$$

has a unique solution for arbitrary T and all $x \in I$ (in L^2 -sense). Proof idea:

- 1. Uniqueness in $L^2_{\mathbb{N}}$ -sense by comparing two solutions
- 2. Existence in L^2_{\boxtimes} -sense for small T by contraction argument
- 3. Extend 2. to arbitrary T with the induction method for FBSDEs (Delarue '02)
- 4. Extract version solving the system for all $x \in I$

A Solvable Example

$$\mathcal{J}^{x}(\alpha^{x}; Z^{x}) = \frac{1}{2} \mathbb{E} \Big[\int_{0}^{T=3} \big((\alpha_{t}^{x})^{2} + (X_{t}^{x} - Z_{t}^{x})^{2} \big) dt + (X_{T}^{x} - Z_{T}^{x})^{2} \Big] dX_{t}^{x} = (-X_{t}^{x} + \alpha_{t}^{x} + Z_{t}^{x}) dt + dB_{t}^{x}, \quad X_{0}^{x} = \xi^{x} \sim \text{Normal}(8, 1/4), Z_{t}^{x} = \int_{I} w(x, y) \mathbb{E}[X_{t}^{y}] \lambda(dy), \quad x \in I, \ t \in [0, T].$$

$$\mathcal{J}^{x}(\alpha^{x}; Z^{x}) = \frac{1}{2} \mathbb{E} \Big[\int_{0}^{T=3} \big((\alpha_{t}^{x})^{2} + (X_{t}^{x} - Z_{t}^{x})^{2} \big) dt + (X_{T}^{x} - Z_{T}^{x})^{2} \Big] dX_{t}^{x} = (-X_{t}^{x} + \alpha_{t}^{x} + Z_{t}^{x}) dt + dB_{t}^{x}, \quad X_{0}^{x} = \xi^{x} \sim \text{Normal}(8, 1/4), Z_{t}^{x} = \int_{I} w(x, y) \mathbb{E}[X_{t}^{y}] \lambda(dy), \quad x \in I, \ t \in [0, T].$$

f, h convex \Rightarrow sufficient Pontryagin SMP, equilibrium characterized by the FBSDE

$$\begin{aligned} d\hat{X}_{t}^{x} &= \left(-\hat{X}_{t}^{x} - p_{t}^{x} + \hat{Z}_{t}^{x}\right) dt + dB_{t}^{x}, & \hat{X}_{0}^{x} = \xi^{x} \\ dp_{t}^{x} &= \left(\hat{X}_{t}^{x} + p_{t}^{x} - \hat{Z}_{t}^{x}\right) dt + q_{t}^{x} dB_{t}^{x}, & p_{T}^{x} = \hat{X}_{T}^{x} - \hat{Z}_{T}^{x} \\ \hat{Z}_{t}^{x} &= \int_{I} w(x, y) \mathbb{E}[\hat{X}_{t}^{y}] \lambda(dy), & x \in I, \ t \in [0, T] \end{aligned}$$

 \rightarrow Solve the FBSDE explicitly up to a system of ODEs (some of them Riccati) \rightarrow Size of ODE system determined by the rank of the graphon

To solve the FBSDE, make the ansatz $\rho_t^{\scriptscriptstyle X}=\eta_t^{\scriptscriptstyle X}+\zeta_t^{\scriptscriptstyle X}\hat{X}_t^{\scriptscriptstyle X}$ where

 $\rightarrow~\eta^{\scriptscriptstyle X}$ and $\zeta^{\scriptscriptstyle X}$ are deterministic functions of time for all $x\in I$

To solve the FBSDE, make the ansatz $p_t^{\scriptscriptstyle X} = \eta_t^{\scriptscriptstyle X} + \zeta_t^{\scriptscriptstyle X} \hat{X}_t^{\scriptscriptstyle X}$ where

 $\rightarrow~\eta^{\rm x}$ and $\zeta^{\rm x}$ are deterministic functions of time for all ${\rm x}\in {\rm I}$

From the ansatz: $q_t^x = \eta_t^x$

To solve the FBSDE, make the ansatz $p_t^{\scriptscriptstyle X} = \eta_t^{\scriptscriptstyle X} + \zeta_t^{\scriptscriptstyle X} \hat{X}_t^{\scriptscriptstyle X}$ where

 $\rightarrow~\eta^{\rm x}$ and $\zeta^{\rm x}$ are deterministic functions of time for all ${\rm x}\in {\rm I}$

From the ansatz: $q_t^{\scriptscriptstyle X} = \eta_t^{\scriptscriptstyle X}$ and

$$\begin{cases} \frac{d\eta_t^x}{dt} = (\eta_t^x)^2 + \eta_t^x + 1, & \eta_T^x = 1 \\ \frac{d\zeta_t^x}{dt} = (1 + \eta_t^x)\zeta_t^x - (1 + \eta_t^x)\hat{Z}_t^x, & \zeta_T^x = -\hat{Z}_T^x, \\ d\hat{X}_t^x = \left(-(1 + \eta_t^x)\hat{X}_t^x - \zeta_t^x + \hat{Z}_t^x\right)dt + dB_t^x, & \hat{X}_0^x = \xi^x \end{cases}$$

To solve the FBSDE, make the ansatz $p_t^{\scriptscriptstyle X} = \eta_t^{\scriptscriptstyle X} + \zeta_t^{\scriptscriptstyle X} \hat{X}_t^{\scriptscriptstyle X}$ where

 $\rightarrow~\eta^{\rm x}$ and $\zeta^{\rm x}$ are deterministic functions of time for all $x\in I$

From the ansatz: $q_t^{\scriptscriptstyle X} = \eta_t^{\scriptscriptstyle X}$ and

$$\begin{cases} \frac{d\eta_t^x}{dt} = (\eta_t^x)^2 + \eta_t^x + 1, & \eta_T^x = 1 \\ \frac{d\zeta_t^x}{dt} = (1 + \eta_t^x)\zeta_t^x - (1 + \eta_t^x)\hat{Z}_t^x, & \zeta_T^x = -\hat{Z}_T^x, \\ d\hat{X}_t^x = \left(-(1 + \eta_t^x)\hat{X}_t^x - \zeta_t^x + \hat{Z}_t^x\right)dt + dB_t^x, & \hat{X}_0^x = \xi^x \end{cases}$$

 $\rightarrow \eta^{x}$ independent of x (we drop the superscript)

To solve the FBSDE, make the ansatz $p_t^{\scriptscriptstyle X} = \eta_t^{\scriptscriptstyle X} + \zeta_t^{\scriptscriptstyle X} \hat{X}_t^{\scriptscriptstyle X}$ where

 $\rightarrow~\eta^{\rm x}$ and $\zeta^{\rm x}$ are deterministic functions of time for all ${\rm x}\in {\rm I}$

From the ansatz: $q_t^{\scriptscriptstyle X} = \eta_t^{\scriptscriptstyle X}$ and

$$\begin{cases} \frac{d\eta_t^x}{dt} = (\eta_t^x)^2 + \eta_t^x + 1, & \eta_T^x = 1 \\ \frac{d\zeta_t^x}{dt} = (1 + \eta_t^x)\zeta_t^x - (1 + \eta_t^x)\hat{Z}_t^x, & \zeta_T^x = -\hat{Z}_T^x, \\ d\hat{X}_t^x = \left(-(1 + \eta_t^x)\hat{X}_t^x - \zeta_t^x + \hat{Z}_t^x\right)dt + dB_t^x, & \hat{X}_0^x = \xi^x \end{cases}$$

 $\rightarrow \eta^{x}$ independent of x (we drop the superscript)

ightarrow Given η , (ζ, \hat{Z}) forms a closed (infinite-dimensional) system

$$\begin{cases} \frac{d\zeta_t^{x}}{dt} = (1+\eta_t)\zeta_t^{x} - (1+\eta_t)\hat{Z}_t^{x}, & \zeta_T^{x} = -\hat{Z}_T^{x}, \\ \frac{d\hat{Z}_t^{x}}{dt} = -(1+\eta_t)\hat{Z}_t^{x} - [W\zeta_t^{\cdot}]^{x} + [W\hat{Z}_t^{\cdot}]^{x}, & \hat{Z}_0^{x} = [W\xi^{\cdot}]^{x} \end{cases}$$

The graphon operator is Hilbert-Schmidt

- $\rightarrow [W\zeta_t^{\cdot}]^x = \sum_{k=1}^{\infty} \lambda_k \phi_k(x) \langle \zeta, \phi_k \rangle_{\lambda_l}$
- $\rightarrow \{\phi_k\}_{k=1}^\infty$ is an orthonormal basis in $L^2(I)$ of eigenfunctions of W
- $\rightarrow \{\lambda_k\}_{k=1}^\infty$ are the corresponding eigenvalues

The graphon operator is Hilbert-Schmidt

$$\rightarrow [W\zeta_t]^x = \sum_{k=1}^{\infty} \lambda_k \phi_k(x) \langle \zeta, \phi_k \rangle_{\lambda_l} \rightarrow \{\phi_k\}_{k=1}^{\infty} \text{ is an orthonormal basis in } L^2(I) \text{ of eigenfunctions of } W \rightarrow \{\lambda_k\}_{k=1}^{\infty} \text{ are the corresponding eigenvalues}$$

Let
$$v_t^k := \langle \zeta_t, \phi_k \rangle_{\lambda_I}$$
, $z_t^k := \langle \hat{Z}_t, \phi_k \rangle_{\lambda_I}$, and $x^k := \langle \xi, \phi_k \rangle_{\lambda_I}$. Then
 $[W\hat{Z}_t](x) = \sum_{k=1}^\infty \lambda_k z_t^k \phi_k(x), \qquad [W\zeta_t^i](x) = \sum_{k=1}^\infty \lambda_k v_t^k \phi_k(x).$

where for $k = 1, 2, \ldots$

$$\begin{cases} \frac{dv_t^k}{dt} = (1 + \eta_t)v_t^k - (1 + \eta_t)z_t^k, & v_T^k = -z_T^k, \\ \frac{dz_t^k}{dt} = (-1 - \eta_t + \lambda_k)z_t^k + -\lambda_k v_t^k, & z_0^k = \lambda_k x^k. \\ x^k = [W\xi]^x \stackrel{k \in LLN}{=} [W\mathbb{E}[\xi]]^x = 8 \end{cases}$$
(2)

→ Size of FBODE system (2) is determined by the rank of W!→ FBODE system (2) can be solved explicitly with the ansatz $v_t^k = \pi_t^k z_t^k$

Graphon	Form	Rank	Eigenvalue(s)	Eigenvector(s)
Constant	K	1	K	1
Power law	$(xy)^\gamma, \ \gamma \geq 0$	1	$(1-2\gamma)^{-1}$	$(1-2\gamma)^{-1/2}x^{-\gamma}$
Min-max	$(x \wedge y)(1 - x \vee y)$	∞	$(\pi k)^{-2}, \ k \in \mathbb{N}$	$\sqrt{2}\sin(\pi kx), \ k\in\mathbb{N}$

Graphon	Form	Rank	Eigenvalue(s)	Eigenvector(s)
Constant	K	1	K	1
Power law	$(xy)^\gamma, \ \gamma \geq 0$	1	$(1-2\gamma)^{-1}$	$(1-2\gamma)^{-1/2}x^{-\gamma}$
Min-max	$(x \wedge y)(1 - x \vee y)$	∞	$(\pi k)^{-2}, \ k \in \mathbb{N}$	$\sqrt{2}\sin(\pi kx), \ k\in\mathbb{N}$

Connection with *N*-player games

Two ways to construct finite graphs from graphons

- $\rightarrow\,$ Sampling open/closed edges
- \rightarrow Weighing edges

We focus on connecting the latter approach to the graphon game.

Two ways to construct finite graphs from graphons

- \rightarrow Sampling open/closed edges
- \rightarrow Weighing edges

We focus on connecting the latter approach to the graphon game.

- → I^{∞} denote the countable product of *I*. A generic sequence $(x_k)_{k=1}^{\infty}$ in I^{∞} will be denoted by x^{∞} .
- $\rightarrow \, \mathcal{I}^\infty$ the countable product of \mathcal{I}
- $\rightarrow \ \lambda^{\infty}$ the countable product of λ

In the iteratively completed infinite product space $(I^{\infty}, \overline{\mathcal{I}}^{\infty}, \overline{\lambda}^{\infty})$ the processes $(B^{x})_{x \in x^{\infty}}$ are mutually independent for $\overline{\lambda}^{\infty}$ -a.e. $x^{\infty} \in I^{\infty}$ (Hammond, Sun '21).

$$ightarrow$$
 Let $(x_k)_{k=1}^{\infty}=x^{\infty}\in I^{\infty}$ be given

 $\rightarrow\,$ Consider the $\it N\mathchar`-$ player game

$$\begin{aligned} J^{k,N}(\alpha^{k,N};\alpha^{-k,N}) &:= \mathbb{E}\Big[\int_0^T f^{x_k}(X_t^{k,N},\alpha_t^{k,N},Z_t^{k,N})dt + h^{x_k}(X_T^{k,N},Z_T^{k,N})\Big] \\ dX_t^{k,N} &= (a(x_k)X_s^{k,N} + b(x_k)\alpha_t^{k,N} + c(x_k)Z_t^{k,N})dt + dB_t^{x_k}, \quad X_0^{k,N} = \xi^{x_k}, \\ Z_t^{k,N} &:= \frac{1}{N}\sum_{\ell=1}^N w(x_k,x_\ell)X_t^{\ell,N}, \quad k = 1,\ldots,N, \ t \in [0,T]. \end{aligned}$$

$$ightarrow$$
 Let $(x_k)_{k=1}^\infty = x^\infty \in I^\infty$ be given

 $\rightarrow\,$ Consider the N-player game

$$J^{k,N}(\alpha^{k,N}; \alpha^{-k,N}) := \mathbb{E}\Big[\int_0^T f^{x_k}(X_t^{k,N}, \alpha_t^{k,N}, Z_t^{k,N})dt + h^{x_k}(X_T^{k,N}, Z_T^{k,N})\Big]$$

$$dX_t^{k,N} = (a(x_k)X_s^{k,N} + b(x_k)\alpha_t^{k,N} + c(x_k)Z_t^{k,N})dt + dB_t^{x_k}, \quad X_0^{k,N} = \xi^{x_k},$$

$$Z_t^{k,N} := \frac{1}{N} \sum_{\ell=1}^N w(x_k, x_\ell)X_t^{\ell,N}, \quad k = 1, \dots, N, \ t \in [0, T].$$

Equilibrium conditions by Pontryagin SMP: a fully coupled FBSDE system for

$$(\hat{X}^{k,N}, p^{k\ell,N}, q^{k\ell m,N})_{k,\ell,m=1}^N$$

Propagation of Chaos

$$\begin{split} &\Delta(\mathbf{x}^{\infty}, N) := \\ &\max_{1 \leq k \leq N} \left(\mathbb{E} \Big[\sup_{t \in [0, T]} \left(|\hat{X}_{t}^{k, N} - \hat{X}_{t}^{x_{k}}|^{2} + |p_{t}^{kk, N} - p_{t}^{x_{k}}|^{2} \right) \Big] + \sup_{t \in [0, T]} \mathbb{E} \Big[|\hat{Z}_{t}^{k, N} - \hat{Z}_{t}^{x_{k}}|^{2} \Big] \Big). \end{split}$$

Theorem (A., Carmona, Laurière) For $\bar{\lambda}^{\infty}$ -a.e. $x^{\infty} \in I^{\infty} \colon \Delta(x^{\infty}, N) \xrightarrow[N \to +\infty]{} 0$

Propagation of Chaos

$$\begin{split} &\Delta(\mathbf{x}^{\infty}, N) := \\ &\max_{1 \le k \le N} \left(\mathbb{E} \Big[\sup_{t \in [0, T]} \left(|\hat{X}_t^{k, N} - \hat{X}_t^{x_k}|^2 + |p_t^{kk, N} - p_t^{x_k}|^2 \right) \Big] + \sup_{t \in [0, T]} \mathbb{E} \Big[|\hat{Z}_t^{k, N} - \hat{Z}_t^{x_k}|^2 \Big] \Big). \end{split}$$

Theorem (A., Carmona, Laurière) For $\bar{\lambda}^{\infty}$ -a.e. $x^{\infty} \in I^{\infty}$: $\Delta(x^{\infty}, N) \xrightarrow[N \to +\infty]{} 0$

If furthermore $I \ni x \mapsto w(x, y) \in \mathbb{R}$ is 1/2-Hölder continuous, uniformly in $y \in I$, then for all $\varepsilon > 0$ there exists a $N_{\varepsilon} : I^{\infty} \to \mathbb{N}$ such that

$$\bar{\lambda}^{\infty} \Big(\Delta(x^{\infty}, N) \leq \frac{(C + \varepsilon)^2 \log \log N}{N}, \ N \geq N_{\varepsilon}(x^{\infty}) \Big) = 1,$$

where C is a finite positive constant depending only on T and the graphon w.

ightarrow Similar result under other conditions, we can avoid the continuity assumption

Results on the connection with N-player games implied by the PoC result:

- → The graphon game Nash equilibrium strategy collection $(\hat{\alpha}^{x_k})_{k=1}^N$ forms an ε_N -Nash equilibrium for the *N*-player game between the players (x_1, \ldots, x_N) when $N \ge \underline{N}(x^\infty)$, $\overline{\lambda}^\infty$ -a.s. where $\varepsilon_N = O(N^{-1} \log \log N)$.
- → The *N*-player game Nash equilibrium converges componentwise to the graphon game Nash equilibrium; the rate of convergence is uniform and at most ε_N :

$$\max_{1\leq k\leq N} \mathbb{E}\Big[\int_0^T |\hat{\alpha}_t^{k,N} - \hat{\alpha}_t^{x_k}|^2 dt\Big] \leq \varepsilon_N^2, \quad N\geq \underline{N}, \ \bar{\lambda}^\infty\text{-a.e.} \ x^\infty\in I^\infty.$$

Finite State Stochastic Graphon Games

What changes?

What changes?

 $\rightarrow~$ Poisson random measures replaces Brownian Motion in the construction

What changes?

- $\rightarrow~$ Poisson random measures replaces Brownian Motion in the construction
- $\rightarrow\,$ Graphon pure-jump SDE system describes the state trajectories

What changes?

- ightarrow Poisson random measures replaces Brownian Motion in the construction
- $\rightarrow\,$ Graphon pure-jump SDE system describes the state trajectories
- \rightarrow Aggregates are deterministic and continuous by ELLN (for a carefully chosen class of controls).

SIR transition rate matrices

$$\begin{bmatrix} \cdots & \beta \rho_t(l) & 0 \\ 0 & \cdots & \gamma \\ 0 & 0 & \cdots \end{bmatrix} \text{ vs. } \begin{bmatrix} \cdots & \beta \int_l w(x, y) \rho_t^{y}(l) dy & 0 \\ 0 & \cdots & \gamma \\ 0 & 0 & \cdots \end{bmatrix}$$

Consider random processes with a finite state space $E = \{1, ..., M\}$.

What changes?

- $\rightarrow\,$ Poisson random measures replaces Brownian Motion in the construction
- \rightarrow Pure-jump SDE describes state
- \rightarrow Aggregate is deterministic and continuous by ELLN (for a carefully chosen class of controls).

Controlled SIR transition rate matrices

$$\begin{bmatrix} \cdots & \beta \alpha_t \int_A a \rho_t(I, da) & 0 \\ 0 & \cdots & \gamma \\ 0 & 0 & \cdots \end{bmatrix} \text{ vs. } \begin{bmatrix} \cdots & \beta \alpha_t^x \int_I w(x, y) \left(\int_A a \rho_t^y(I, da) \right) dy & 0 \\ 0 & \cdots & \gamma \\ 0 & 0 & \cdots \end{bmatrix}$$

- \rightarrow Pure-jump SDE representation with Poisson random measures ($\mathit{N}^{x}_{\cdot})_{x\in\mathit{I}}$
- $\rightarrow\,$ Extended mean-field interaction to model epidemic disease spread

- \rightarrow Pure-jump SDE representation with Poisson random measures (N^x_{\cdot})_{x\in I}
- ightarrow Extended mean-field interaction to model epidemic disease spread

 \rightarrow The Graphon SDE system is well-defined (for a carefully chosen class of controls)

Theorem (A., Carmona, Dayanıklı, Laurière) Fix an admissible strategy profile $\underline{\alpha}$. If κ and K are bounded and Lipschitz, then there exists a unique solution X (in L^2_{\boxtimes} -sense), càdlàg and E-valued, to

$$\begin{split} X_t^x &= \xi^x + \sum_{k=-n+1}^{n-1} k \int_{\mathbb{R} \times (0,t]} \mathbb{1}_{[0,\kappa_s^x(X_{s-}^x,k,\alpha_s^x,Z_{s-}^x)]}(y) \mathcal{N}_k^x(dy \otimes ds), \\ Z_t^x &= \int_I w(x,y) \mathcal{K}(\alpha_t^y,X_{t-}^y) \lambda(dy), \end{split}$$

the corresponding aggregate Z is $\mathbb{P} \boxtimes \lambda$ -a.s. deterministic and continuous, and there is a version solving the system for all $x \in I$ in standard L^2 -sense.

- \rightarrow Pure-jump SDE representation with Poisson random measures $(N^{x}_{\cdot})_{x\in I}$
- ightarrow Extended mean-field interaction to model epidemic disease spread

- ightarrow The Graphon SDE system is well-defined (for a carefully chosen class of controls)
- \rightarrow There exists a solution to the analytic game (FBODE system)

- \rightarrow Pure-jump SDE representation with Poisson random measures $(N^{x}_{\cdot})_{x\in I}$
- $\rightarrow\,$ Extended mean-field interaction to model epidemic disease spread

- ightarrow The Graphon SDE system is well-defined (for a carefully chosen class of controls)
- $\rightarrow\,$ There exists a solution to the analytic game (FBODE system)

What is still to be done

- ightarrow Probabilistic formulation of the game equilibrium
- \rightarrow Connection to *N*-player games

Thank you!