Stochastic Dynamic Graphon Games

The Linear-Quadratic Case

Alexander Aurell!

1ORFE, Princeton University
aaurell@princeton.edu

Introduction to Mean Field Games and Applications
ISMI
June 22, 2021



Talk based on the joint work

“Stochastic Graphon Games: Il. The Linear-Quadratic Case” A., Carmona, Lauriere,
arXiv 2021.

— The graphon game: A limit model for a class of linear-quadratic stochastic games
with non-identical players

— Convergence analysis

“Finite State Graphon Games with Applications to Epidemics” A., Carmona, Dayanikl,
Lauriére, arXiv 2021.
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Introductory example: MFG for systemic risk
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The interaction term is the average log-monetary reserve difference:

1n
(Xt -
i=1
... representing the rate at which bank i borrows from or lends to bank j.”

What if there is a distinguishing feature, impacting the interaction, such as ...?
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.. geography. Neighbouring banks interact more than distant banks.

A very simple geography:

— each bank is geographically labeled, bank k by xx € / :=[0,1]

— weights w : | x | — [0, 1], symmetric
e xi and x; geographical close = w(xy, x;) is large
e xi and x; distant = w(x, x;) is small

Instead of %Z,N:l(X{ — X[), player k now "feels” the weighted aggregate

N
ZtkyN = Z (K, x5)( X Xt)

N-player game for systemic risk with non-identical players
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Introductory example: MFG for systemic risk

Limit model with infinitesimal agents

Drawing inspiration from economic theory:
— If the agent (index) space is an atomless probability space (/,Z, \) then each
individual agent has no influence.
— Aggregates are averages over the agent space (cf. expectations)

— Agents are exposed to idiosyncratic shocks (independent noise)
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Limit model with infinitesimal agents

Drawing inspiration from economic theory:
— If the agent (index) space is an atomless probability space (/,Z, \) then each
individual agent has no influence.
— Aggregates are averages over the agent space (cf. expectations)

— Agents are exposed to idiosyncratic shocks (independent noise)

A candidate continuum limit model
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minE {/ “(af) —qai Zf + =
aX 0 2 2

dX{ = a(Z +ai)dt + odW;, t€[0,T], xel
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7 = / Wiy )XY — X)dy, te[0,T], xel
1

(Q1) Is the (linear-quadratic) limit model well defined?

(Q2) Can we compute and approximate Nash equilibria?



Introductory example: MFG for systemic risk

The candidate limit model is building on the Brownian motion vector (B*)xc;.

Measurability problems when A is the Lebesgue measure

— For an iid Brownian motion (B*).e; based on the usual continuum product via
Kolmogorov construction: almost all sample functions x — B*(w) are
essentially equal to an arbitrarily given function x — 3* on [0, 1].

— A process like that is not measurable in the index — problem defining aggregates!
Relating back to the motivating example:
— Interaction term is the aggregate [, w(x,y)(X{ — X)dy

— y — X! is a priori not dy-measurable!



Outline

“Stochastic Graphon Games: Il. The Linear-Quadratic Case” A., Carmona, Lauriére,
arXiv 2021.

— The graphon game: A limit model for linear-quadratic stochastic games with
non-identical players

e Measurability problems addressed with Fubini extension theory
e (Linear) Graphon SDE
e Nash equilibria for LQ Graphon games

— Convergence analysis

“Finite State Graphon Games with Applications to Epidemics” A., Carmona, Dayanikh,
Lauriére, arXiv 2021.

— Finite state graphon games

e Pure-jump Graphon SDE

e Applications to epidemiology
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We will consider the following "linear SDE" system: given an admissible strategy
profile & € A (open-loop; decentralized; progressive; square integrable)
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The Linear Graphon SDE system

We will consider the following "linear SDE" system: given an admissible strategy
profile & € A (open-loop; decentralized; progressive; square integrable)

dX: = (a(0)X; + b(x)ai +e(x)Z} ) ot + dBY, t€[0,T], x€ !
z: = [ wix )X\, tefo. 7] xel,

!
X =¢

The graphon w

— is a symmetric measurable function from / x [ to [0, 1]
— induces a Hilbert-Schmidt operator W : L2(1) — L2(1)

— W can be extended to L3(/) (and beyond)
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The Linear Graphon SDE system

We will consider the following "linear SDE” system: given an admissible strategy
profile a € A (open-loop; decentralized; progressive; square integrable)

dX; = (a(x)x: + b(x)a + c(x)z:) dt+dB;, te[0,T], xel
z: = [ wix )X\, telo. 7] xel,
I
X =¢
(Q1) Is the (linear-quadratic) limit model well defined?
Is there a suitable probability space over Q x | where we can

— define the idiosyncratic noise (B*)xes so that
— the aggregates (Z)«es are well-defined and

— in which we can solve the system (1) is a strong sense?
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The Linear Graphon SDE System

Fubini extension

Theory developed by (Sun '98, '06; Sun, Zhang '09) and others.
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The Linear Graphon SDE System

Fubini extension
Theory developed by (Sun '98, '06; Sun, Zhang '09) and others.

Guarantees the existence of a probability space (2 x /,V,Q)
— extending (A x I, FQZ,P®\)

— where the agent space (/,Z, \)

1. is atomless

2. extends the Lebesgue space (/, B(I), Leb(/))

— with the Fubini property

— carrying an essentially pairwise independent Brownian motion vector (B*)x¢/

for A-a.e. x € | B is independent of B” for A-a.e. y €/
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The Linear Graphon SDE System

Fubini extension

To emphasize the Fubini property (Q disintegrates with marginals P and \) we write
Qx L, FRZ,PKN) = (2 x I,WV,Q)

We will denote L2-spaces over the Fubini extension by L%, expectation by E¥.

13



The Linear Graphon SDE System

Fubini extension

To emphasize the Fubini property (Q disintegrates with marginals P and \) we write
Qx L, FRZ,PKN) = (2 x I,WV,Q)
We will denote L2-spaces over the Fubini extension by L%, expectation by E¥.

Theorem (Exact Law of Large Numbers)
Let f be a process from (2 x I, FXZ,PX \) to the Polish space S. If (f*)«c/ are
e.p.i., then Ao [f (W)™t = (PR A) o [f ()]}, P-a.s.

13



The Linear Graphon SDE System

Fubini extension

To emphasize the Fubini property (Q disintegrates with marginals P and \) we write
Qx L, FRZ,PKN) = (2 x I,WV,Q)
We will denote L2-spaces over the Fubini extension by L%, expectation by E¥.

Theorem (Exact Law of Large Numbers)
Let f be a process from (2 x I, FXZ,PX \) to the Polish space S. If (f*)«c/ are
e.p.i., then Ao [f (W)™t = (PR A) o [f ()]}, P-a.s.

Corollary: if f is furthermore [P X A-integrable:
/ F(w)A(dx) = / E[f]\(dx), AcT, P-as.
A A

"Complete removal of individual uncertainty”, "Insurable risk”

13



The Linear Graphon SDE System

Fubini extension

To emphasize the Fubini property (Q disintegrates with marginals P and \) we write
Qx L, FRZ,PKN) = (2 x I,WV,Q)
We will denote L2-spaces over the Fubini extension by L%, expectation by E¥.

Theorem (Exact Law of Large Numbers)
Let f be a process from (2 x I, FXZ,PX \) to the Polish space S. If (f*)«c/ are
e.p.i., then Ao [f (W)™t = (PR A) o [f ()]}, P-a.s.

Corollary: if f is furthermore [P X A-integrable:
/ F(w)A(dx) = / E[f|\(dx), AcZ, P-as.
A A
"Complete removal of individual uncertainty”, "Insurable risk”

Example
Since (B{)xe/ are e.p.i. and integrable

/ABtX(w))\(dx):/AE[BtX]A(dx):O, Pas, AcT, tc[o,T]



The Linear Graphon SDE System

With (B*)xes and A as introduced in the discussion above

aX = (a(x)x; + b(x)al + c(x)z:)dt + dB,

7 = / wx, y)X! A(dy),
!

X =¢

te[0,T], xel

tel0,T], xel,

(1)
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The Linear Graphon SDE System

With (B*)xes and A as introduced in the discussion above

dX = (a(x)xf + b(x)o + c(x)z;)dt +dBY, tel[o,T], xel

z: = [wix ) xON@). tel0.Th xel, (D)
1

X =¢

Theorem (A., Carmona, Lauriére)

Let a,b,c: | — R be Z-measurable and bounded. For each admissible strategy
profile « (open-loop, decentralized, progressive, square-integrable):

— There exists a unique solution X to (1) (in L-sense)
— The aggregate Z is almost surely deterministic:

PRA(|Z—fllr =0)=1, f(w,x):=F(x), feld(l;C) (w,x)eQxI.

— There is a version of X that solves (1) for all x € | (in L*-sense) and of Z that is
deterministic for all x € I.

14



The Linear Graphon SDE System

Take-aways from the theorem:

— We can replace Z;* with the deterministic aggregate [, w(x,y)E[X?]\(dy)

— or [, w(x,y)E[X?]dy if y — E[X{] is B(I)-measurable (depends on assumptions
oné&, a, b, c)
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The Linear Graphon SDE System

Take-aways from the theorem:

— We can replace Z;* with the deterministic aggregate [, w(x,y)E[X?]\(dy)

— or [, w(x,y)E[X?]dy if y — E[X{] is B(I)-measurable (depends on assumptions
oné&, a, b, c)

— We can solve the Graphon SDE " x-by-x" (compared to an L% sense)

15
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i) =5] [ £ Z)a+ 1 (X5, 20)]

dx; = (a(x)x: + b(x)Be + c(x)z;) dt + dB;, X; = ¢,

Zr = //W(x, WEIXUIN(du), ue 1, te [0, T]
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The Stochastic Graphon Game

.
F(ia) = B[ [ £, 80 Z)de+ (X, 20)].
0
dx; = (a(x)x: + b(x)B: + c(x)z;) dt + dB;, X; = ¢,
Zr = /W(x, WE[XIA(du), u €1, tE[0,T]
I

dx¢ = ()X + bly)ad + c(y)Z! ) de + dBL, X =€, v # x,
— Strategy profile o appears only in the aggregate
— Aggregate insensitive to changing one strategy (\ atomless)
— We write JX(3; «) as J*(8; Z¥)

Definition (Nash equilibrium)
An admissible strategy profile & is a graphon game Nash equilibrium if

jX(&x;ZQ;X) < JX(ﬁ;ZQ;X)7 ﬂ c A(X)7 x el

where A(x) is the set of decentralized, open-loop, progressive, square-integrable
processes.

17



The Stochastic Graphon Game

Pontryagin Stochastic Maximum Principle

If & is a graphon game Nash equilibrium then
& € arginf H*(t, X, u,pf), ae te[0,T], P-as,
ueR

for each x € I, with (X*, p*, ¢*) solving the Hamiltonian system

dXy = OpH*(t, X, &%, pl)dt + dBy,  Xg = ¢,
dpy = —OyHX(t, XY, &%, p¥)dt + qrdBY,  py = Oxh* (X7, Z5),

where H*: [0, T] x R x R x R — R is the Hamiltonian of player x,
H*(t, X, u, p) = F*(x; u, Z8) + (a(x)x + b(x)u + ¢(x) Z)p,

and Z; is the aggregate of X;: ZX = [ w(x,y)E[X/]\(dy).

Sufficient condition when: (x, u) — (f*(x, u, z), h*(x, z)) is jointly convex for z € R.

18



The Stochastic Graphon Game

Lin

ear-quadratic type assumptions:

— f, h quadratic functions

— a, b, c, f, hsuch that some Riccati equations are solvable

Then the Hamiltonian system (FBSDE) from the Pontryagin SMP

dX¢ = 0,H (¢, XX, 65, pf)dt + dBY,  X§ =€,

dpi = —O H (8, X2, &%, pY)dt + qFdBY,  py = O h* (X%, 25),
H (¢, x, u, p) = £*(x, u, ZX) + (a(x)x + b(x)u + ¢(x) Z)p,

Z5 = [, w(x,y)E[X?]\(dy)

has a unique solution for arbitrary T and all x € / (in L’-sense).

Proof idea:

1
2
3
4

. Uniqueness in L%-sense by comparing two solutions

. Existence in L%—sense for small T by contraction argument

. Extend 2. to arbitrary T with the induction method for FBSDEs (Delarue '02)
. Extract version solving the system for all x € /

19



A Solvable Example



Example

1 = X X X X X

T 2) = E| / (@) + (X = Z))de + (X5 — Z5)’]
0

dX{ = (=XI + o + ZX) dt +dByY, X§ =& ~ Normal(8,1/4),

7' = /W(x,y)E[X{])\(dy), xel, telo,T].

21



Example

X X X 1 T:3 X X X X X
T2 = 3B [ (@0 + 0 - 20 de+ (G - 257
0
dX{ = (=X{ +af + Z)dt + dB;, X =& ~ Normal(8,1/4),
zi = [wxEXRW@). el te o, T]
!

f, h convex = sufficient Pontryagin SMP, equilibrium characterized by the FBSDE

R = (=X pr+ 25) dt + dBY, R =€
doi = (R + pi = 27) dt + qi dBY, pr=X5 -2

Zr = /w(x,y)]E[f({]A(dy), xel, telo,T]

— Solve the FBSDE explicitly up to a system of ODEs (some of them Riccati)

— Size of ODE system determined by the rank of the graphon

21



Example

To solve the FBSDE, make the ansatz p;f = n{ + C?)A(tx where

— 1 and ¢* are deterministic functions of time for all x € |
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Example

To solve the FBSDE, make the ansatz p;f = n{ + C?)A(tx where
— n* and ¢* are deterministic functions of time for all x € /

From the ansatz: qf = 7} and

dn;

ORI =1
d(_,-t)t( _ (1+ X\ X 1 X 2)( X 2)(
dr ne )G — (L+m7) 4, ¢r=—17,

dx: = (7(1 )X -+ 2:) dt + dBY, X&=¢
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dn;

ORI =1
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dr ne )G — (L+m7) 4, Cr = Ts
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Example

To solve the FBSDE, make the ansatz p;f = n{ + C?)A(tx where
— n* and ¢* are deterministic functions of time for all x € /

From the ansatz: qf = 7} and

dn;

ORI =1
dC?7(1+ X)xi 1 sz xiizx
dr ne )G — (L+m7) 4, Cr = T

dx: = (7(1 )X -+ 2:) dt + dBY, X&=¢

— 7" independent of x (we drop the superscript)

— Given 7, (¢, Z) forms a closed (infinite-dimensional) system

d ‘ X 5 X X S x
dctt = (1 +n)¢ — (L +me) 2, ¢r=—217,
d2X Zx S1x Z-1x 5 x Y
dtt =—(1+mn)Zi — WG+ [WZ]", £y =[W(]

22



Example

The graphon operator is Hilbert-Schmidt
= [WET = 22020 Medu(x)(C, dida,

— {¢x}21 is an orthonormal basis in L?(/) of eigenfunctions of W
— {\«}i2, are the corresponding eigenvalues
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Example

The graphon operator is Hilbert-Schmidt
= [WET = 22020 Medu(x)(C, dida,

— {¢x}21 is an orthonormal basis in L?(/) of eigenfunctions of W
— {\«}i2, are the corresponding eigenvalues

Let th( = <<t7¢k>A/v Ztk = <2t7¢k>>\l’ and Xk = <€7¢)k>>\l' Then
WZ1(x) =D Mezéoul(x),  [WEIx) =D Mevidu(x).
k=1 k=1

where for k =1,2,...

dvtk B k k k k

ar (T +ne)ve = (L+ne)ze, VT = =271,
dzf

= (Lot a2 = et

X = [we Y (WEET =8

— Size of FBODE system (2) is determined by the rank of W!
— FBODE system (2) can be solved explicity with the ansatz vf = mfzf

23



Example

Graphon
Constant
Power law
Min-max

Form
K
(xy)", v=0
(xAy)1=xVy)

Rank

Eigenvalue(s)
K
(1-29)7"
(nk)™2, k€N

Eigenvector(s)
1
(1—29)72x77
V2sin(mkx), k €N

24



Example

Graphon Form Rank | Eigenvalue(s) Eigenvector(s)
Constant K 1 K 1
Power law (xy)’, v>0 1 (1—2y)7" (1 —27)" 2%

Min-max | (xAy)(1—=xVy) | oo (mk) ™2, k €N | V2sin(mkx), k€N

Constant Graphon Power-Law Graphon Min-Max Graphon

5
State: X;' State: X' State: X'

24
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Connection with N-player games

Two ways to construct finite graphs from graphons

— Sampling open/closed edges

— Weighing edges

We focus on connecting the latter approach to the graphon game.
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Connection with N-player games

Two ways to construct finite graphs from graphons

— Sampling open/closed edges
— Weighing edges

We focus on connecting the latter approach to the graphon game.

— 1°° denote the countable product of /. A generic sequence (xx)z2; in [°° will be
denoted by x°.

— Z°° the countable product of 7

— A% the countable product of A

In the iteratively completed infinite product space (/“.T’o., /_\°°) the processes
(B*)xexe are mutually independent for A>°-a.e. x> € /°° (Hammond, Sun '21).

26



Connection with N-player games

— Let (xk)i2y = x> € I° be given

— Consider the N-player game

Jk,N(ak,N, 7kN —F / £ ( XkN 7Ztk,N)dt+ hxk(X_I;_,N’Z;i,N)]

dX{N = (a(a)XEN + bOa)ar N + c(x)ZEM)dt + dB, XN

N
1

kJV.

Z, —N; (X, xe) X", k=1,...,N, t€][0, T].

=&,
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Connection with N-player games

— Let (xk)i2y = x> € I° be given

— Consider the N-player game

Jk,N(ak,N, 7kN —F / £ ( XkN ’Ztk,N)dt+ hxk(X_I;_,N’Z_I;_,N)

dX{N = (a(a)XEN + bOa)ar N + c(x)ZEM)dt + dB, XN

N
1
zf’N-—N; (e, x )X N, k=1,...,N, te[0,T].

Equilibrium conditions by Pontryagin SMP: a fully coupled FBSDE system for

vk,N _ke,N _kém,N\N
(X P »q )k,Z,m:l

=&,

27



Connection with N-player games

Propagation of Chaos

A(x,N) :=

max (B[ sup_ (IR — ot

1=k<N \ Loy

Theorem (A., Carmona, Lauriére)
For X*-a.e. x* € 1°°: A(x>*,N) ——— 0
N—+oc0

piP)]

+ sup E
te[0,T]

(1267 = 227)).

28



Connection with N-player games

Propagation of Chaos

A(x,N) :=

max (E[ sup (XN — R Polpt — pit )] + sup E[I12EY - 247]).

1<k<N te[0,T] tel0,T]

Theorem (A., Carmona, Lauriére)
For X*-a.e. x* € 1°°: A(x>*,N) ——— 0
N—+oc0

If furthermore | 5 x — w(x, y) € R is 1/2-Hélder continuous, uniformly in'y € I,

then for all € > 0 there exists a N : I°° — N such that

2
(A0, N) < (Cte) loglog N ,\',°g log N

N> /vg(x‘”)) -1,
where C is a finite positive constant depending only on T and the graphon w.

— Similar result under other conditions, we can avoid the continuity assumption
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Connection with N-player games

Results on the connection with N-player games implied by the PoC result:

A XK

— The graphon game Nash equilibrium strategy collection (&)}, forms an
en-Nash equilibrium for the N-player game between the players (xi, ..., xn)

when N > N(x>), A\*-a.s. where ey = O(N " log log N).

— The N-player game Nash equilibrium converges componentwise to the graphon
game Nash equilibrium; the rate of convergence is uniform and at most ey:

-
max IE[/ N —df“\2dt} <, N>N, 3 -ae x® e l®.
1<k<N o
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Finite State Stochastic Graphon Games

Consider a game between cadlag processes with a finite state space E = {1,..., M}.

What changes?
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Finite State Stochastic Graphon Games

Consider a game between cadlag processes with a finite state space E = {1,..., M}.

What changes?

— Poisson random measures replaces Brownian Motion in the construction
— Graphon pure-jump SDE system describes the state trajectories

— Aggregates are deterministic and continuous by ELLN (for a carefully chosen
class of controls).

SIR transition rate matrices

Bp:(l) 0 - Bf,w(x,y)pt(I)dy 0
0 ¥ VS. 0
0 0 .- 0 0
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Finite State Stochastic Graphon Games

Consider random processes with a finite state space E = {1,..., M}.

What changes?

— Poisson random measures replaces Brownian Motion in the construction
— Pure-jump SDE describes state

— Aggregate is deterministic and continuous by ELLN (for a carefully chosen class
of controls).

Controlled SIR transition rate matrices
Bar [, ape(l,da) 0 Bai [,w(x,y) ([,api(l,da))dy 0
0 e 0% VS. O e
0 0 0 0
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Finite State Stochastic Graphon Games

— Pure-jump SDE representation with Poisson random measures (N*)xe/

— Extended mean-field interaction to model epidemic disease spread

What we know
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Finite State Stochastic Graphon Games

— Pure-jump SDE representation with Poisson random measures (N*)xe/

— Extended mean-field interaction to model epidemic disease spread
What we know

— The Graphon SDE system is well-defined (for a carefully chosen class of controls)

Theorem (A., Carmona, Dayanikh, Lauriére)
Fix an admissible strategy profile «. If k and K are bounded and Lipschitz, then
there exists a unique solution X (in L-sense), cadlag and E-valued, to

n—1

th = £X —+ Z k/ 1[07,1;()(:77/(,(1?’2:7)](_)/)/\/;(((3/}/® dS),
Rx(0,t]

k=—n+1
7 = / wx, y)K (e, X2 )A(dy),
!

the corresponding aggregate Z is P X A-a.s. deterministic and continuous, and there
is a version solving the system for all x € | in standard L*-sense.
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Finite State Stochastic Graphon Games

— Pure-jump SDE representation with Poisson random measures (N*).¢/

— Extended mean-field interaction to model epidemic disease spread
What we know

— The Graphon SDE system is well-defined (for a carefully chosen class of controls)

— There exists a solution to the analytic game (FBODE system)
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Finite State Stochastic Graphon Games

— Pure-jump SDE representation with Poisson random measures (N*).¢/

— Extended mean-field interaction to model epidemic disease spread

What we know
— The Graphon SDE system is well-defined (for a carefully chosen class of controls)
— There exists a solution to the analytic game (FBODE system)

What is still to be done

— Probabilistic formulation of the game equilibrium

— Connection to N-player games
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Thank you!
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