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Talk based on the joint work

“Stochastic Graphon Games: II. The Linear-Quadratic Case” A., Carmona, Laurière,

arXiv 2021.

→ The graphon game: A limit model for a class of linear-quadratic stochastic games

with non-identical players

→ Convergence analysis

“Finite State Graphon Games with Applications to Epidemics” A., Carmona, Dayanıklı,

Laurière, arXiv 2021.

2



Introductory example



Introductory example: MFG for systemic risk

N-player game with weak interaction (Carmona, Fouque, Sun ’13)
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The interaction term is the average log-monetary reserve difference:
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”. . . representing the rate at which bank i borrows from or lends to bank j .”

What if there is a distinguishing feature, impacting the interaction, such as . . . ?
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Introductory example: MFG for systemic risk

. . . geography. Neighbouring banks interact more than distant banks.

A very simple geography:

→ each bank is geographically labeled, bank k by xk ∈ I := [0, 1]

→ weights w : I × I 7→ [0, 1], symmetric
• xk and xj geographical close ⇒ w(xk , xj ) is large

• xk and xj distant ⇒ w(xk , xj ) is small

Instead of 1
N

∑N
j=1(X j

t − X k
t ), player k now ”feels” the weighted aggregate

Z k,N
t :=

1

N

N∑
j=1

w(xk , xj)(X j
t − X k

t )

N-player game for systemic risk with non-identical players
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Introductory example: MFG for systemic risk

Limit model with infinitesimal agents

Drawing inspiration from economic theory:

→ If the agent (index) space is an atomless probability space (I , I, λ) then each

individual agent has no influence.

→ Aggregates are averages over the agent space (cf. expectations)

→ Agents are exposed to idiosyncratic shocks (independent noise)

A candidate continuum limit model

min
αx

E
[∫ T

0

1

2
(αx

t )2 − qαx
tZ

x
t +

ε

2
(Z x

t )2 dt + g(X x
T )

]
dX x

t = a (Z x
t + αx

t ) dt + σdW x
t , t ∈ [0,T ], x ∈ I

Z x
t =

∫
I

w(x , y)(X y
t − X x

t )dy , t ∈ [0,T ], x ∈ I

(Q1) Is the (linear-quadratic) limit model well defined?

(Q2) Can we compute and approximate Nash equilibria?
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Introductory example: MFG for systemic risk

The candidate limit model is building on the Brownian motion vector (Bx)x∈I .

Measurability problems when λ is the Lebesgue measure

→ For an iid Brownian motion (Bx)x∈I based on the usual continuum product via

Kolmogorov construction: almost all sample functions x 7→ Bx(ω) are

essentially equal to an arbitrarily given function x 7→ βx on [0, 1].

→ A process like that is not measurable in the index – problem defining aggregates!

Relating back to the motivating example:

→ Interaction term is the aggregate
∫
I
w(x , y)(X y

t − X x
t )dy

→ y 7→ X y
t is a priori not dy-measurable!
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Outline

“Stochastic Graphon Games: II. The Linear-Quadratic Case” A., Carmona, Lauriére,

arXiv 2021.

→ The graphon game: A limit model for linear-quadratic stochastic games with
non-identical players

• Measurability problems addressed with Fubini extension theory

• (Linear) Graphon SDE

• Nash equilibria for LQ Graphon games

→ Convergence analysis

“Finite State Graphon Games with Applications to Epidemics” A., Carmona, Dayanıklı,

Lauriére, arXiv 2021.

→ Finite state graphon games

• Pure-jump Graphon SDE

• Applications to epidemiology
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The Linear Graphon SDE System



The Linear Graphon SDE system

We will consider the following ”linear SDE” system: given an admissible strategy

profile α ∈ A (open-loop; decentralized; progressive; square integrable)
dX x

t =
(
a(x)X x

t + b(x)αx
t + c(x)Z x

t

)
dt + dBx

t , t ∈ [0,T ], x ∈ I

Z x
t =

∫
I

w(x , y)X y
t λ(dy), t ∈ [0,T ], x ∈ I ,

X x
0 = ξx

The graphon w

→ is a symmetric measurable function from I × I to [0, 1]

→ induces a Hilbert-Schmidt operator W : L2(I )→ L2(I )

→ W can be extended to L2
λ(I ) (and beyond)
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(Q1) Is the (linear-quadratic) limit model well defined?

Is there a suitable probability space over Ω× I where we can

→ define the idiosyncratic noise (Bx)x∈I so that

→ the aggregates (Z x
t )x∈I are well-defined and

→ in which we can solve the system (1) is a strong sense?
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The Linear Graphon SDE System

Fubini extension

Theory developed by (Sun ’98, ’06; Sun, Zhang ’09) and others.

Guarantees the existence of a probability space (Ω× I ,W,Q)

→ extending (Ω× I ,F ⊗ I,P⊗ λ)

→ where the agent space (I , I, λ)

1. is atomless

2. extends the Lebesgue space (I ,B(I ), Leb(I ))

→ with the Fubini property

→ carrying an essentially pairwise independent Brownian motion vector (Bx)x∈I

for λ-a.e. x ∈ I Bx is independent of By for λ-a.e. y ∈ I
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The Linear Graphon SDE System

Fubini extension

To emphasize the Fubini property (Q disintegrates with marginals P and λ) we write

(Ω× I ,F � I,P� λ) := (Ω× I ,W,Q)

We will denote L2-spaces over the Fubini extension by L2
�, expectation by E�.

Theorem (Exact Law of Large Numbers)

Let f be a process from (Ω× I ,F � I,P� λ) to the Polish space S . If (f x)x∈I are

e.p.i., then λ ◦ [f ·(ω)]−1 = (P� λ) ◦ [f ·(·)]−1, P-a.s.

Corollary: if f is furthermore P� λ-integrable:∫
A

f x(ω)λ(dx) =

∫
A

E[f x ]λ(dx), A ∈ I, P-a.s.

”Complete removal of individual uncertainty”, ”Insurable risk”

Example

Since (Bx
t )x∈I are e.p.i. and integrable∫

A

Bx
t (ω)λ(dx) =

∫
A

E[Bx
t ]λ(dx) = 0, P-a.s., A ∈ I, t ∈ [0,T ].
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The Linear Graphon SDE System

With (Bx)x∈I and λ as introduced in the discussion above
dX x

t =
(
a(x)X x

t + b(x)αx
t + c(x)Z x

t

)
dt + dBx

t , t ∈ [0,T ], x ∈ I

Z x
t =

∫
I

w(x , y)X y
t λ(dy), t ∈ [0,T ], x ∈ I ,

X x
0 = ξx

(1)

Theorem (A., Carmona, Laurière)
Let a, b, c : I → R be I-measurable and bounded. For each admissible strategy

profile α (open-loop, decentralized, progressive, square-integrable):

→ There exists a unique solution X to (1) (in L2
�-sense)

→ The aggregate Z is almost surely deterministic:

P� λ (‖Z − f ‖T = 0) = 1, f (ω, x) := f̃ (x), f̃ ∈ L2
λ(I ; C) (ω, x) ∈ Ω× I .

→ There is a version of X that solves (1) for all x ∈ I (in L2-sense) and of Z that is

deterministic for all x ∈ I .
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The Linear Graphon SDE System

Take-aways from the theorem:

→ We can replace Z x
t with the deterministic aggregate

∫
I
w(x , y)E[X y

t ]λ(dy)

→ or
∫
I
w(x , y)E[X y

t ]dy if y 7→ E[X y
t ] is B(I )-measurable (depends on assumptions

on ξ, a, b, c)

→ We can solve the Graphon SDE ”x-by-x” (compared to an L2
� sense)
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The Stochastic Graphon Game



The Stochastic Graphon Game

Jx(β;α) := E
[ ∫ T

0

f x
(
X x

t , βt ,Z
x
t

)
dt + hx(X x

T ,Z
x
T

)]
,

dX x
t =

(
a(x)X x

t + b(x)βt + c(x)Z x
t

)
dt + dBx

t , X x
0 = ξx ,

Z x
t =

∫
I

w(x , u)E[X u
t ]λ(du), u ∈ I , t ∈ [0,T ]

dX y
t =

(
a(y)X y

t + b(y)αy
t + c(y)Z y

t

)
dt + dBy

t , X y
0 = ξy , y 6= x ,

→ Strategy profile α appears only in the aggregate

→ Aggregate insensitive to changing one strategy (λ atomless)

→ We write Jx(β;α) as J x(β;Z x)

Definition (Nash equilibrium)
An admissible strategy profile α̂ is a graphon game Nash equilibrium if

J x(α̂x ;Z α̂;x) ≤ J x(β;Z α̂;x), β ∈ A(x), x ∈ I

where A(x) is the set of decentralized, open-loop, progressive, square-integrable

processes.
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The Stochastic Graphon Game

Pontryagin Stochastic Maximum Principle

If α̂ is a graphon game Nash equilibrium then

α̂x
t ∈ arg inf

u∈R
Hx(t, X̂ x

t , u, p
x
t ), a.e. t ∈ [0,T ], P-a.s,

for each x ∈ I , with (X̂ x , px , qx) solving the Hamiltonian system dX̂ x
t = ∂pH

x(t, X̂ x
t , α̂

x
t , p

x
t )dt + dBx

t , X̂ x
0 = ξx ,

dpx
t = −∂χHx(t, X̂ x

t , α̂
x
t , p

x
t )dt + qx

t dB
x
t , px

T = ∂χh
x(X̂ x

T , Ẑ
x
T ),

where Hx : [0,T ]× R× R× R→ R is the Hamiltonian of player x ,

Hx(t, χ, u, p) = f x(χ, u, Ẑ x
t ) + (a(x)χ+ b(x)u + c(x)Ẑ x

t )p,

and Ẑ x
t is the aggregate of X̂ ·t : Ẑ x

t =
∫
I
w(x , y)E[X̂ y

t ]λ(dy).

Sufficient condition when: (χ, u) 7→ (f x(χ, u, z), hx(χ, z)) is jointly convex for z ∈ R.
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The Stochastic Graphon Game

Linear-quadratic type assumptions:

→ f , h quadratic functions

→ a, b, c, f , h such that some Riccati equations are solvable

Then the Hamiltonian system (FBSDE) from the Pontryagin SMP
dX̂ x

t = ∂pH
x(t, X̂ x

t , α̂
x
t , p

x
t )dt + dBx

t , X̂ x
0 = ξx ,

dpx
t = −∂χHx(t, X̂ x

t , α̂
x
t , p

x
t )dt + qx

t dB
x
t , px

T = ∂χh
x(X̂ x

T , Ẑ
x
T ),

Hx(t, χ, u, p) = f x(χ, u, Ẑ x
t ) + (a(x)χ+ b(x)u + c(x)Ẑ x

t )p,

Ẑ x
t =

∫
I
w(x , y)E[X̂ y

t ]λ(dy)

has a unique solution for arbitrary T and all x ∈ I (in L2-sense).

Proof idea:

1. Uniqueness in L2
�-sense by comparing two solutions

2. Existence in L2
�-sense for small T by contraction argument

3. Extend 2. to arbitrary T with the induction method for FBSDEs (Delarue ’02)

4. Extract version solving the system for all x ∈ I

19



A Solvable Example



Example

J x(αx ;Z x) =
1

2
E
[ ∫ T=3

0

(
(αx

t )2 + (X x
t − Z x

t )2
)
dt + (X x

T − Z x
T )2
]

dX x
t = (−X x

t + αx
t + Z x

t ) dt + dBx
t , X x

0 = ξx ∼ Normal(8, 1/4),

Z x
t =

∫
I

w(x , y)E[X y
t ]λ(dy), x ∈ I , t ∈ [0,T ].

f , h convex ⇒ sufficient Pontryagin SMP, equilibrium characterized by the FBSDE

dX̂ x
t =

(
−X̂ x

t − px
t + Ẑ x

t

)
dt + dBx

t , X̂ x
0 = ξx

dpx
t =

(
X̂ x

t + px
t − Ẑ x

t

)
dt + qx

t dB
x
t , px

T = X̂ x
T − Ẑ x

T

Ẑ x
t =

∫
I

w(x , y)E[X̂ y
t ]λ(dy), x ∈ I , t ∈ [0,T ]

→ Solve the FBSDE explicitly up to a system of ODEs (some of them Riccati)

→ Size of ODE system determined by the rank of the graphon
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Example

To solve the FBSDE, make the ansatz px
t = ηxt + ζxt X̂

x
t where

→ ηx and ζx are deterministic functions of time for all x ∈ I

From the ansatz: qx
t = ηxt and

dηxt
dt

= (ηxt )2 + ηxt + 1, ηxT = 1

dζxt
dt

= (1 + ηxt )ζxt − (1 + ηxt )Ẑ x
t , ζxT = −Ẑ x

T ,

dX̂ x
t =

(
−(1 + ηxt )X̂ x

t − ζxt + Ẑ x
t

)
dt + dBx

t , X̂ x
0 = ξx

→ ηx independent of x (we drop the superscript)

→ Given η, (ζ, Ẑ) forms a closed (infinite-dimensional) system
dζxt
dt

= (1 + ηt)ζ
x
t − (1 + ηt)Ẑ

x
t , ζxT = −Ẑ x

T ,

dẐ x
t

dt
= −(1 + ηt)Ẑ

x
t − [W ζ·t ]

x + [WẐ ·t ]x , Ẑ x
0 = [W ξ·]x
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Example

The graphon operator is Hilbert-Schmidt

→ [W ζ·t ]
x =

∑∞
k=1 λkφk(x)〈ζ, φk〉λI

→ {φk}∞k=1 is an orthonormal basis in L2(I ) of eigenfunctions of W

→ {λk}∞k=1 are the corresponding eigenvalues

Let v k
t := 〈ζt , φk〉λI , z

k
t := 〈Ẑt , φk〉λI , and xk := 〈ξ, φk〉λI . Then

[WẐ ·t ](x) =
∞∑
k=1

λkz
k
t φk(x), [W ζ·t ](x) =

∞∑
k=1

λkv
k
t φk(x).

where for k = 1, 2, . . .

dv k
t

dt
= (1 + ηt)v

k
t − (1 + ηt)z

k
t , v k

T = −zkT ,

dzkt
dt

=
(
− 1− ηt + λk

)
zkt +−λkv

k
t , zk0 = λkx

k .

xk = [W ξ·]x
ELLN
= [WE[ξ·]]x = 8

(2)

→ Size of FBODE system (2) is determined by the rank of W !

→ FBODE system (2) can be solved explicity with the ansatz v k
t = πk

t z
k
t
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Example

Graphon Form Rank Eigenvalue(s) Eigenvector(s)

Constant K 1 K 1

Power law (xy)γ , γ ≥ 0 1 (1− 2γ)−1 (1− 2γ)−1/2x−γ

Min-max (x ∧ y)(1− x ∨ y) ∞ (πk)−2, k ∈ N
√

2 sin(πkx), k ∈ N
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Connection with N-player games



Connection with N-player games

Two ways to construct finite graphs from graphons

→ Sampling open/closed edges

→ Weighing edges

We focus on connecting the latter approach to the graphon game.

→ I∞ denote the countable product of I . A generic sequence (xk)∞k=1 in I∞ will be

denoted by x∞.

→ I∞ the countable product of I

→ λ∞ the countable product of λ

In the iteratively completed infinite product space (I∞, Ī∞, λ̄∞) the processes

(Bx)x∈x∞ are mutually independent for λ̄∞-a.e. x∞ ∈ I∞ (Hammond, Sun ’21).
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Connection with N-player games

→ Let (xk)∞k=1 = x∞ ∈ I∞ be given

→ Consider the N-player game

Jk,N(αk,N ;α−k,N) := E
[ ∫ T

0

f xk (X k,N
t , αk,N

t ,Z k,N
t )dt + hxk (X k,N

T ,Z k,N
T )

]
dX k,N

t =
(
a(xk)X k,N

s + b(xk)αk,N
t + c(xk)Z k,N

t

)
dt + dBxk

t , X k,N
0 = ξxk ,

Z k,N
t :=

1

N

N∑
`=1

w(xk , x`)X
`,N
t , k = 1, . . . ,N, t ∈ [0,T ].

Equilibrium conditions by Pontryagin SMP: a fully coupled FBSDE system for

(X̂ k,N , pk`,N , qk`m,N)Nk,`,m=1
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Connection with N-player games

Propagation of Chaos

∆(x∞,N) :=

max
1≤k≤N

(
E
[

sup
t∈[0,T ]

(
|X̂ k,N

t − X̂ xk
t |

2+|pkk,N
t − pxk

t |
2)]+ sup

t∈[0,T ]

E
[
|Ẑ k,N

t − Ẑ xk
t |

2
])
.

Theorem (A., Carmona, Laurière)

For λ̄∞-a.e. x∞ ∈ I∞: ∆(x∞,N) −−−−−→
N→+∞

0

If furthermore I 3 x 7→ w(x , y) ∈ R is 1/2-Hölder continuous, uniformly in y ∈ I ,

then for all ε > 0 there exists a Nε : I∞ → N such that

λ̄∞
(

∆(x∞,N) ≤ (C + ε)2 log logN

N
, N ≥ Nε(x∞)

)
= 1,

where C is a finite positive constant depending only on T and the graphon w .

→ Similar result under other conditions, we can avoid the continuity assumption
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Connection with N-player games

Results on the connection with N-player games implied by the PoC result:

→ The graphon game Nash equilibrium strategy collection (α̂xk )Nk=1 forms an

εN-Nash equilibrium for the N-player game between the players (x1, . . . , xN)

when N ≥ N(x∞), λ̄∞-a.s. where εN = O(N−1 log logN).

→ The N-player game Nash equilibrium converges componentwise to the graphon

game Nash equilibrium; the rate of convergence is uniform and at most εN :

max
1≤k≤N

E
[ ∫ T

0

|α̂k,N
t − α̂xk

t |
2dt
]
≤ ε2N , N ≥ N, λ̄∞-a.e. x∞ ∈ I∞.
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Finite State Stochastic Graphon Games



Finite State Stochastic Graphon Games

Consider a game between càdlàg processes with a finite state space E = {1, . . . ,M}.

What changes?

→ Poisson random measures replaces Brownian Motion in the construction

→ Graphon pure-jump SDE system describes the state trajectories

→ Aggregates are deterministic and continuous by ELLN (for a carefully chosen

class of controls).

SIR transition rate matrices· · · βpt(I ) 0

0 · · · γ

0 0 · · ·

 vs.

· · · β
∫
I
w(x , y)py

t (I )dy 0

0 · · · γ

0 0 · · ·
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→ Aggregates are deterministic and continuous by ELLN (for a carefully chosen

class of controls).

SIR transition rate matrices· · · βpt(I ) 0

0 · · · γ

0 0 · · ·

 vs.

· · · β
∫
I
w(x , y)py

t (I )dy 0

0 · · · γ

0 0 · · ·
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Finite State Stochastic Graphon Games

Consider random processes with a finite state space E = {1, . . . ,M}.

What changes?

→ Poisson random measures replaces Brownian Motion in the construction

→ Pure-jump SDE describes state

→ Aggregate is deterministic and continuous by ELLN (for a carefully chosen class

of controls).

Controlled SIR transition rate matrices· · · βαt

∫
A
aρt(I , da) 0

0 · · · γ

0 0 · · ·

 vs.

· · · βαx
t

∫
I
w(x , y)

(∫
A
aρyt (I , da)

)
dy 0

0 · · · γ

0 0 · · ·
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Finite State Stochastic Graphon Games

→ Pure-jump SDE representation with Poisson random measures (Nx
· )x∈I

→ Extended mean-field interaction to model epidemic disease spread

What we know

→ The Graphon SDE system is well-defined (for a carefully chosen class of controls)

Theorem (A., Carmona, Dayanıklı, Laurière)
Fix an admissible strategy profile α. If κ and K are bounded and Lipschitz, then

there exists a unique solution X (in L2
�-sense), càdlàg and E -valued, to

X x
t = ξx +

n−1∑
k=−n+1

k

∫
R×(0,t]

1[0,κx
s (X

x
s−,k,α

x
s ,Z

x
s−)](y)Nx

k (dy ⊗ ds),

Z x
t =

∫
I

w(x , y)K(αy
t ,X

y
t−)λ(dy),

the corresponding aggregate Z is P� λ-a.s. deterministic and continuous, and there

is a version solving the system for all x ∈ I in standard L2-sense.
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Finite State Stochastic Graphon Games

→ Pure-jump SDE representation with Poisson random measures (Nx
· )x∈I

→ Extended mean-field interaction to model epidemic disease spread

What we know

→ The Graphon SDE system is well-defined (for a carefully chosen class of controls)

→ There exists a solution to the analytic game (FBODE system)

What is still to be done

→ Probabilistic formulation of the game equilibrium

→ Connection to N-player games
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Thank you!
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