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1. Motivation

• A tool for centrally planned
desicion-making for the movement
of pedestrian groups who are
forced to reach a target position,
such as a security team.

• In a dense crowd, pedestrians re-
act to crowd aggregates which, if all
agents are similar, can be replaced
by the law of a typical agent.

• Mean-field control is suitable for
pedestrian crowd modeling when
a) the central planner is rational

and has the ability to anticipate the
behaviour of other pedestrians, and
b) aggegate effects are considered.

• This approach leads to the formula-
tion of an optimization problem.

2. Model formulation

• The motion of our agents is de-
scribed by the BSDE{

dYt = b(t ,Yt ,PYt , Zt ,ut )d t +Zt dBt ,

YT = yT .
(1)

• The agent uses two controls:
- (ut)t , used to heed preferences on
energy use etc. Picked from U [0,T ],
a set of admissible controls, by an
optimization procedure.
- (Zt)t , used to make the path to yT

the best prediction based on avail-
able information. Given implicitly
by the martingale representation
theorem.

• The central planner solves a mean-
field type control problem,

min
u∈U [0,T ]

E

[∫ T

0
f (t ,Yt ,PYt ,ut )d t +h(Y0,PY0)

]
, (2)

given (1).

3. Optimal control

• A spike pertubation technique
leads to a Pontryagin type max-
imum principle [1].

Theorem
Suppose that (Ŷ , Ẑ , û) is a solu-
tion to the control problem (1)-(2).
Let H be the Hamiltonian

H(t , y,µ, z,u, p) = b(t , y,µ, z,u)p− f (t , y,µ,u)

where (pt)t solves the adjoint
equation

d pt =−
{
∂y H(t , Ŷt ,PŶt

, Ẑt , ût , pt )

−E[∂µH(t , Ŷt , (PŶt
)∗, Ẑt , ût , pt

]}
d t

−pt∂zb(t , Ŷt ,PŶt
, Ẑt , ût )dBt ,

p0 = ∂yh(Ŷ0,PŶt
)+E[∂µh(Ŷt , (PŶt

)∗
]
.

Then
ût = argmax

u∈U
H(t , Ŷt ,PŶt

, Ẑt ,u, pt ), (MP)

for a.e. t, P-a.s.

Theorem
Suppose that H is concave in
(y,µ, z,u), h is convex in (y,µ)
and (ût)t satisfies (MP) P-a.s.
for a.e. t . Then (Ŷ , Ẑ , û) solves
the control problem (1)-(2).

4. Numerical example

• The goal of the central planner
will be to keep our agents close
together and to control their ini-
tial position. The agents’ velo-
city is their control and thier ac-
celeration is subject to noise.

min
u∈U [0,T ]

E

[∫ T

0
λ1u2

t +λ2(Yt −E[Yt ])2d t +λ3(Y0− y0)2
]

s.t. dYt = (ut +Bt )d t +Zt dBt ,

YT = yT

• In Figure 1 the pedestrian dens-
ity is plotted for the two sets of
parameter values, the left row is
mean-seeking (λ2 > 0) while the
right row is neutral (λ2 = 0).

• The target is located at yT =
(2,2) and the desired initial posi-
tion is y0 = (0.1,0.1).

Figure 1. Left row: (λ1,λ2,λ3) = (50,50,10),

right row: (λ1,λ2,λ3) = (50,0,10). Density es-

timate based on simulations of optimally con-

trolled pedestrian paths. The pedestrians has

a preferred starting region around (0.1,0.1)

and will end up in (2,2) (the blue circle). The

pedestrian density is more concentrated for

the left row, due to a mean-seeking prefer-

ence.
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