
On the mean-field type approach to crowd dynamics:
the behavior of pedestrians near walls

Alexander Aurell

Department of Mathematics, KTH Stockholm

ICIAM, Valencia, July 14-19, 2019

(Based on joint work with Boualem Djehiche (KTH))

1 / 37



Pedestrian crowds in confined domains
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Example: Unidirectional pedestrian flow

Experimental results show that average pedestrian speed in a cross-section of a
corridor can be higher in the center than near the walls2, but also higher near
the walls3, depending on the circumstances (congestion, etc).

2Winnie Daamen and Serge P Hoogendoorn. “Flow-density relations for pedestrian traffic”. In: Traffic and granular flow05. Springer,
2007, pp. 315–322.

3Francesco Zanlungo, Tetsushi Ikeda, and Takayuki Kanda. “A microscopic social norm model to obtain realistic macroscopic velocity
and density pedestrian distributions”. In: PloS one 7.12 (2012), e50720.
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Pedestrian crowds in confined domains

Treatment of walls in pedestrian crowd models

Modeling approach Wall modeling

Social force Repulsive forces, disutility

Cellular automata (CA) Forbidden cells

Continuum limit of CA Neumann/no-flux boundary conditions

Hughes flow model Neumann/no-flux boundary conditions, oblique reflection

Mean-field games/control/type games Neumann/no-flux boundary conditions, disutility

Neumann/no-flux boundary conditions on the
pedestrian density correspond to reflection.
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Pedestrian crowds in confined domains: the mean-field approach
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C Dogbé. “Modeling crowd dynamics by the mean-field limit approach”. In: Mathematical and
Computer Modelling 52.9-10 (2010), pp. 1506–1520

Neumann/No-flux

A Lachapelle and M-T Wolfram. “On a mean field game approach modeling congestion and
aversion in pedestrian crowds”. In: Transportation research part B: methodological 45.10 (2011),
pp. 1572–1589

M Burger et al. “On a mean field game optimal control approach modeling fast exit scenarios in
human crowds”. In: Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on. IEEE.
2013, pp. 3128–3133

M Burger et al. “Mean field games with nonlinear mobilities in pedestrian dynamics”. In:
Discrete and Continuous Dynamical Systems-Series B (2014)

M Cirant. “Multi-population mean field games systems with Neumann boundary conditions”. In:
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In this talk we will introduce
sticky reflected SDEs of mean-field type with boundary diffusion

as an alternative approach to wall modeling in the mean-field approach to
crowd dynamics.

Outline

1. Sticky reflected SDEs of mean-field type with boundary diffusion

2. Weak optimal control of sticky reflected SDEs of mean-field type with
boundary diffusion

3. Particle picture

4. Example: Unidirectional pedestrian flow in a tight corridor

6 / 37



Sticky reflected SDEs of mean-field type with boundary diffusion

Consider the SDE system
dXt =

1

2
d`0

t (X ) + 1{Xt>0}dBt , X0 = x0,

1{Xt=0}dt =
1

2γ
d`0

t (X ),
(1)

where

I x0 ∈ R+,

I γ ∈ (0,∞) is a given constant,

I `0(X ) is the local time of X at 0,

I B is a standard Brownian motion.

Engelberg and Peskir (2014)2:
System (1) has no strong solution but a unique weak solution, called a

reflected Brownian motion X in R+ sticky at 0.

2Hans-Jürgen Engelbert and Goran Peskir. “Stochastic differential equations for sticky Brownian motion”. In: Stochastics An
International Journal of Probability and Stochastic Processes 86.6 (2014), pp. 993–1021.
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Sticky reflected SDEs of mean-field type with boundary diffusion

Grothaus and Vosshall (2017)2 extentend the result to a
bounded domain D ⊂ Rd with sticky C 2-smooth boundary ∂D.

To write down the sticky reflected SDE with boundary diffusion system, let

I n(x) be the outward normal of ∂D at x ,

I π(x) := E − n(x)(n(x))∗, the orthogonal projection on the tangent space
of ∂D at x ,

I κ(x) := (π(x)∇) · n(x), the mean curvature of ∂D at x .

These quantities are uniformly bounded over ∂D.

2Martin Grothaus, Robert Voßhall, et al. “Stochastic differential equations with sticky reflection and boundary diffusion”. In:
Electronic Journal of Probability 22 (2017).
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Sticky reflected SDEs of mean-field type with boundary diffusion

Furthermore, let

I Ω := C([0,T ];Rd) be path space,

I F the Borel σ-field over Ω,

I Xt(ω) = ω(t) the coordinate process,

I F the m ∈ P(Ω)-completed filtration generated by X .

There exists a unique probability measure P on (Ω,F) under which
dXt = 1D(Xt)dBt + 1∂D(Xt)

(
dB∂Dt − 1

2γ
n(Xt)dt

)
,

dB∂Dt = π(Xt) ◦ dBt = −1

2
κ(Xt)n(Xt)dt + π(Xt)dBt ,

B standard Brownian motion in Rd , X0 = x0 ∈ D̄, γ > 0,

and X is C([0,T ]; D̄)-valued P-a.s. (in particular, X is P-a.s. uniformly
bounded).2

2Martin Grothaus, Robert Voßhall, et al. “Stochastic differential equations with sticky reflection and boundary diffusion”. In:
Electronic Journal of Probability 22 (2017).
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Sticky reflected SDEs of mean-field type with boundary diffusion

dXt = (1D(Xt) + 1∂D(Xt)π(Xt)) dBt − 1∂D(Xt)
1

2

(
κ(Xt) +

1

γ

)
n(Xt)dt

The sticky reflected SDE with boundary diffusion is composed of

I interior diffusion 1D(Xt)dBt ,

I boundary diffusion 1∂D(Xt)dB
∂D
t

I normal sticky reflection −1∂D(Xt)
1

2γ
n(Xt)dt

From now on, we abbreviate

dXt =: σ(Xt)dBt + a(Xt)dt.

σ(Xt) := 1D(Xt) + 1∂D(Xt)π(Xt), a(Xt) := −1∂D(Xt)
1

2

(
κ(Xt) +

1

γ

)
n(Xt).

are bounded.
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The stickiness level γ

γ represents the level of stickiness of ∂D.

Let

I λ be the Lebesgue measure on Rd ,

I s be the surface measure on ∂D,

I ρ := 1Dαλ+ 1∂Dα
′s, α, α′ ∈ R.

Choosing
α = ᾱ/λ(D), α′ = (1− ᾱ)/s(∂D), ᾱ ∈ [0, 1],

ρ becomes a probability measure on Rd with full support on D̄.

The measure ρ is in fact the invariant distribution of Xt whenever

1

γ
=

ᾱ

(1− ᾱ)

s(∂D)

λ(D)
.

ᾱ→ 1 as γ → 0, and the invariant distribution ρ concentrates on D
ᾱ→ 0 as γ →∞, and the invariant distribution ρ concentrates on ∂D
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Sticky reflected SDEs of mean-field type with boundary diffusion

Interaction and control is introduced via Girsanov transformation (Dominated
case).

Let

I |x |t := sup0≤s≤t |xs |, 0 ≤ t ≤ T ,

I U ⊂ Rd be compact and U =: {u : [0,T ]× Ω→ U | u F-prog.meas.},
I Q(t) := Q ◦X−1

t denote the t-marginal distribution of X under Q ∈ P(Ω),

I β : [0,T ]× Ω× P(Rd)× U → Rd be a measurable function such that

(A) (β(t,X ,Q(t), ut))t≤T is F-prog.meas. for every Q ∈ P(Ω) and u ∈ U .

(B) For every t ∈ [0,T ], ω ∈ Ω, u ∈ U, and µ ∈ P(Rd),

|β(t, x , µ, u)| ≤ C

(
1 + |x |T +

∫
Rd

|y |µ(dy)

)
,

(C) For every t ∈ [0,T ], ω ∈ Ω, u ∈ U, and µ, µ′ ∈ P(Rd),∣∣β(t, ω, µ, u)− β(t, ω, µ′, u)
∣∣ ≤ C · dTV (µ, µ′)
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Sticky reflected SDEs of mean-field type with boundary diffusion

Given Q ∈ P(Ω) and u ∈ U , let

Lu,Q
t := Et

(∫ ·
0

β(s,X ,Q(s), us)dBs

)
.

Lemma 1

The positive measure Pu,Q defined by dPu,Q = Lu,Q
t dP on Ft , for all t ∈ [0,T ],

is a probability measure on Ω. Moreover, under Pu,Q the coordinate process
satisfies

Xt = x0 +

∫ t

0

(
σ(Xs)β(s,X ,Q(s), us) + a(Xs)

)
ds +

∫ t

0

σ(Xs)dB
u,Q
s ,

where Bu,Q
· is a standard Pu,Q-Brownian motion.

13 / 37



Proof of Lemma 1

Step 1. If ϕ is a process such that Pϕ, defined by dPϕ = LϕTdP on FT where
Lϕt := Et(

∫ ·
0
ϕsdBs), is a probability measure on Ω, the coordinate process

under Pϕ satisfies

dXt = (σ(Xt)ϕt + a(Xt)) dt + σ(Xt)dB
ϕ
t ,

where Bϕ is a Pϕ-Brownian motion. Smoothness of ∂D together with
Burkholder-Davis-Gundy’s inequality yields

Eϕ[|X |pT ] ≤ CEϕ
[
|x0|p +

∫ T

0

|σ(Xs)ϕs + a(Xs)|pds +

∣∣∣∣∫ ·
0

σ(Xs)dB
ϕ
s

∣∣∣∣p
T

]

≤ C

(
1 +

∫ T

0

Eϕ[|ϕs |p]ds

)
,

where Eϕ denotes expectation taken under Pϕ.
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Proof of Lemma 1

Step 2. Consider the measure Pu,Q
n given (on Ft) by

dPu,Q
n = Et

(∫ ·
0

β(s,X ,Q(s), us)1{|X |s≤n}dBs

)
dP.

Use TV-distance to show that Pu,Q
n ∈ P(Ω). By Step 1, (B), and (C),

E u,Q
n [|X |pT ] ≤ C

(
1 +

∫ T

0

E u,Q
n [|β(s,X ,Q(s), us)|p] ds

)
≤ C

(
1 + dTV (Q(s),P(s))p +

∫ T

0

E u,Q
n [|β(s,X ,P(s), us)|p] ds

)
≤ C

(
1 +

∫ T

0

E u,Q
n

[
C
(

1 + |X |ps + EP[|X |ps ]
)]

ds

)
≤ C

(
1 +

∫ T

0

E u,Q
n [|X |ps ]ds

)
.

By Gronwall’s inequality E u,Q
n [|X |pT ] ≤ Cp, where Cp depends only on p, T , the

Lipschitz and linear growth constant of β, and |x0|p.
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Proof of Lemma 1

Step 3. By the same lines as the proof of Proposition (A.1) in El-Karoui &
Hamadène (2003)2 (see also Benes (1971)3), the likelihood Lu,Q is a martingale
for every Q ∈ P(Ω) and u ∈ U , hence Pu,Q ∈ P(Ω).

Step 4. By Girsanov’s theorem the coordinate process under Pu,Q satisfies

Xt = x0 +

∫ t

0

(
σ(Xs)β(s,X ,Q(s), us) + a(Xs)

)
ds +

∫ t

0

σ(Xs)dB
Q
s .

�

2Nicole El-Karoui and Said Hamadène. “BSDEs and risk-sensitive control, zero-sum and nonzero-sum game problems of stochastic
functional differential equations”. In: Stochastic Processes and their Applications 107.1 (2003), pp. 145–169.

3VE Beneš. “Existence of optimal stochastic control laws”. In: SIAM Journal on Control 9.3 (1971), pp. 446–472.
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Sticky reflected SDEs of mean-field type with boundary diffusion

For a given u ∈ U , consider the map

Φ : P(Ω) 3 Q 7→ Pu,Q ∈ P(Ω).

Proposition 1

The map Φ is well-defined and admits a unique fixed point. Moreover, for every
p ≥ 2, the fixed point, denoted Pu, belongs to Pp(Ω), i.e.

E u [|X |pT ] ≤ Cp <∞,

where the constant Cp depends only on p, T , the Lipschitz and the
linear-growth constant of β, and |x0|p.
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Proof of Proposition 1

Step 1. By Lemma 1, the map is well-defined.

Step 2. Given Q, Q̃ ∈ P(Ω), by Csiszár-Kullback-Pinsker’s inequality and the
fact that

∫ ·
0

(dBs − βQ
s ds) is a martingale under Φ(Q),

D2
T (Φ(Q),Φ(Q̃)) ≤ EΦ(Q)

[
log(LQ

T/L
Q̃
T )
]

=EΦ(Q)
[∫ T

0

(βQ
s −βQ̃

s )dBs−
1

2

∫ T

0

(βQ
s )2−(βQ̃

s )2ds
]

=EΦ(Q)
[∫ T

0

(βQ
s −βQ̃

s )βQ
s −

1

2
(βQ

s )2 +
1

2
(βQ̃

s )2ds
]

=
1

2

∫ T

0

EΦ(Q)
[
(βQ

s − βQ̃
s )2
]
ds

≤ C

∫ T

0

d2
TV (Q(s), Q̃(s))ds ≤ C

∫ T

0

D2
s (Q, Q̃)ds.
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Proof of Proposition 1

Step 3. Iterating the inequality, we obtain for every N ∈ N,

D2
T (ΦN(Q),ΦN(Q̃)) ≤ CNTN

N!
D2

T (Q, Q̃),

where ΦN denotes the N-fold composition of Φ. Hence ΦN is a contraction for
N large enough, thus admitting a unique fixed point.

Step 4. Under Pu, the fixed point of Φ given u ∈ U , the coordinate process
satisfies

dXt = (σ(Xt)β(t,X ,Pu(t), ut) + a(Xt)) dt + σ(Xt)dB
u
t ,

where Bu is a Pu-Brownian motion. Following the calculations of Lemma 1, we
get the estimate

‖Pu‖pp = E u[|X |pT ] ≤ Cp

(
1 + E u

[∫ T

0

|X |ps ds
])

,

where Cp depends only on p, T , the Lipschitz and the linear growth constant
of β, and |x0|p. Gronwall’s inequality then yields E u [|X |pT ] ≤ Cp <∞.

�
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Sticky reflected SDEs of mean-field type with boundary diffusion

Theorem 2

Under (A)-(C) there exists for each u ∈ U a unique weak solution (Pu) to the
sticky reflected SDE of mean-field type with boundary diffusion

dXt = σ(Xt)dB
u
t +

(
a(Xt) + σ(Xt)β(t,Xt ,Pu(t), ut)

)
dt

Under Pu the t-marginal distribution of X· is Pu(t) for t ∈ [0,T ] and X· is
almost surely C([0,T ]; D̄)-valued. Furthermore, Pu ∈ Pp(Ω).
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Weak optimal control of sticky reflected SDEs of mean-field type

Let
f : [0,T ]× Ω× P(Rd)× U → R,

g : Rd × P(Rd)→ R.

Consider the following finite time-horizon problem:

minu∈U J(u) = E u

[∫ T

0

f (t,X ,Pu(t), ut)dt + g(XT ,Pu(T ))

]

= E

[∫ T

0

Lu
t f (t,X ,Pu(t), ut)dt + Lu

Tg(XT ,Pu(T ))

]
s.t. dLu

t = Lu
t β(t,X ,Pu(t), u(t))dBt , Lu

0 = 1,

X is the coordinate process,

(2)

Problem (2) is a weak form mean-field type control problem.
The probability space is controlled via the likelihood Lu.

21 / 37



Weak optimal control of sticky reflected SDEs of mean-field type

Let
f : [0,T ]× Ω× P(Rd)× U → R,

g : Rd × P(Rd)→ R.

Consider the following finite time-horizon problem:

minu∈U J(u) = E u

[∫ T

0

f (t,X ,Pu(t), ut)dt + g(XT ,Pu(T ))

]
= E

[∫ T

0

Lu
t f (t,X ,Pu(t), ut)dt + Lu

Tg(XT ,Pu(T ))

]
s.t. dLu

t = Lu
t β(t,X ,Pu(t), u(t))dBt , Lu

0 = 1,

X is the coordinate process,

(2)

Problem (2) is a weak form mean-field type control problem.
The probability space is controlled via the likelihood Lu.

21 / 37



Weak optimal control of sticky reflected SDEs of mean-field type

Additional assumptions on β, f , and g :

(D) For φ ∈ {β, f },

φu
t = φ(t,X ,E u[rφ(Xt)], ut) = φ(t,X ,E [Lu

t rφ(Xt)], ut),

and gu
T = g(XT ,E [Lu

T rg (XT )]), where rβ , rf , rg : Rd → Rd .

(E) The functions (t, x , y , u) 7→ (f , β)(t, x , y , u) and (x , y) 7→ g(x , y) are twice
continuously differentiable with respect to y . Moreover, β, f and g and all their
derivatives up to second order with respect to y are continuous in (y , u), and
bounded.

(D)-(E) can be relaxed, current form used for the sake of technical simplicity.
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Weak optimal control of sticky reflected SDEs of mean-field type

In view of (A)-(E) Pontryagin’s type stochastic maximum principle is available2.

Theorem 3

Assume that (û, Lû) is an optimal solution to the mean-field type control
problem (2). Then for all v ∈ U and a.e. t ∈ [0,T ] it holds P-a.s. that

H(Lû
t , v , pt , qt)−H(Lû

t , ût , pt , qt) +
1

2
[δ(Lβ)(t)]TPt [δ(Lβ)(t)] ≤ 0,

where
H(Lu

t , ut , pt , qt) := Lu
t β

u
t qt − Lu

t f
u
t ,

δ(Lβ)(t) := Lû
t (β(t,X ,E [Lû

t rβ(Xt)], v)− βû
t ),

dpt = −
(
qtβ

û
t + E

[
qtL

û
t∇yβ

û
t

]
rβ(Xt)− f ût − E

[
Lût∇y f

û
t

]
rf (Xt)

)
dt + qtdBt ,

pT = −g û
T − E

[
LûT∇yg

û
T

]
rg (XT ),

dPt = −
((

βû
t + E [Lût∇yβ

û
t ]rβ(Xt)

)2
Pt + 2

(
β̂û
t + E [Lût∇yβ

û
t ]rβ(Xt)

)
Qt

+ E [qt∇yβ
û
t ]rβ(Xt)− E [∇y f

û
t ]rf (Xt)

)
dt + QtdBt ,

PT = 0,

2Rainer Buckdahn, Boualem Djehiche, and Juan Li. “A general stochastic maximum principle for SDEs of mean-field type”. In:
Applied Mathematics & Optimization 64.2 (2011), pp. 197–216.
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Identifying optimal controls when U is convex.

Whenever U is convex, the optimality condition simplifies to

H(Lû
t , v , pt , qt)−H(Lû

t , ût , pt , qt) ≤ 0, ∀v ∈ U; P-a.s., a.e.-t ∈ [0,T ].

Assume that û is optimal. A matching argument yields

qt = −∇xφ (Xt , t)σ(Xt),

where φ(XT ,T ) is the terminal condition for p,

φ(Xt , t) := g
(
Xt ,E

û[rg (Xt)]
)

+ E û
[
∇yg

(
Xt ,E

û[rg (Xt))]
)]

rg (Xt),

and the optimality condition (variation of H) relates û to q,

qt∇uβ
û
t = ∇uf

û
t , P-a.s., a.e.-t ∈ [0,T ].
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Example: Unidirectional pedestrian flow

Experimental results show that average pedestrian speed in a cross-section of a
corridor can be higher in the center than near the walls2, but also higher near
the walls3, depending on the circumstances (congestion, etc).

2Winnie Daamen and Serge P Hoogendoorn. “Flow-density relations for pedestrian traffic”. In: Traffic and granular flow05. Springer,
2007, pp. 315–322.

3Francesco Zanlungo, Tetsushi Ikeda, and Takayuki Kanda. “A microscopic social norm model to obtain realistic macroscopic velocity
and density pedestrian distributions”. In: PloS one 7.12 (2012), e50720.
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Example: Unidirectional pedestrian flow

Let D be a long narrow corridor with exit xT and entrance x0 in opposite ends.min
u·∈U

1

2
E

[∫ 1

0

Lu
t f (t,X·,E [Lu

t rf (Xt)], ut)dt + Lu
T |XT − xT |2

]
,

s.t. dLu
t = Lu

t utdBt , Lu
0 = 1.

f is a congestion-type running cost:

f (t,X·,E [Lu
t rf (Xt)], ut) = C(Xt) {1 + h (t,X·,E

u[rf (Xt)])} |ut |2,

where

I |u|2, cf > 0, is the cost of moving in free space;

I h|u|2 is the additional cost to move in congested areas;

I C(Xt) := ξ1Γ(Xt) + 1D(Xt), ξ > 0, monitors f on the boundary ∂D.

Lower ξ yields lower overall cost of moving on ∂D and vice versa.
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Example: Unidirectional pedestrian flow

Assuming U is convex, an optimal control satisfies

ût =
σ(Xt)(Xt − xT )

C(Xt) (1 + h(t,X·,E û[rf (Xt)])
, P-a.s., a.e.-t ∈ [0,T ].

û implements the following strategy:

I Move towards the exit xT , but scale the speed according to the local
congestion.
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Example: Unidirectional pedestrian flow

ût =
σ(Xt)(Xt − xT )

C(Xt) (1 + h(t,X·,E û[rf (Xt)]))
.

We will compare two congestion costs

I friendly
h = h1 := |X2(t)− E û[X2(t)]|

I averse

h = h2 :=
1

|X2(t)− E û[X2(t)]|
In both cases,

I rf ((x1, x2)) = x2

I X2(t) is the y -component of Xt (perpendicular to the corridor walls).
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Example: Unidirectional pedestrian flow

Estimated cross-section mean speed profiles
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(a) Congestion friendly (h = h1).
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(b) Congestion averse (h = h2).

I Boundary movement speed is indeed monitored through ξ.
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Particle picture: The corresponding microscopic model

Consider N ∈ N (non-transformed, independent) sticky reflected SDEs with
boundary diffusion {

dX i
t = a(X i

t )dt + σ(X i
t )dB i

t ,

X i
0 = xi , i = 1, . . . ,N.

(3)

Grothaus and Vosshall2 (2017):

There exists a unique probability measure PN on (Ω,F ), where Ω :=
C([0,T ];RNd) and F is the corresponding filtration. Under PN ,
(X 1, . . . ,XN) satisfies (3) and is C([0,T ]; D̄N)-valued PN -a.s.

2Martin Grothaus, Robert Voßhall, et al. “Stochastic differential equations with sticky reflection and boundary diffusion”. In:
Electronic Journal of Probability 22 (2017).
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Particle picture: The corresponding microscopic model

Weak interaction and control can be introduced in the particle system2

Given u := (u1, . . . , uN) ∈ UN , let µN(t) := 1
N

∑
i=1 δX i

t
and

dLu
i,t = Lu

i,tβ(t,X i , µN(t), ui
t)dB

i
t , Lu

i,0 = 1, i = 1, . . . ,N.

LN,u
t :=

N∏
i=1

Lu
i,t .

LN,u
t defines a Girsanov transformation of PN to PN,u.

Under PN,u the coordinate process is C([0,T ]; D̄)-valued a.s. and satisfies{
dX i

t = (σ(X i
t )β(t,X i

t , µ
N(t), ui

t) + a(X i
t ))dt + σ(X i

t )dB i,u
t ,

X i
0 = x i

0, i = 1, . . . ,N,

where B i,u is a PN,u-Brownian motion. Also, PN,u ∈ Pp((C([0,T ]; D̄)N).

2Martin Grothaus, Robert Voßhall, et al. “Stochastic differential equations with sticky reflection and boundary diffusion”. In:
Electronic Journal of Probability 22 (2017).
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Particle picture: The corresponding microscopic model

Social cost for the particle system:

JN(u) :=
1

N

N∑
i=1

EN,u

[∫ T

0

f (t,X i , µN(t), ui
t)dt + g(X i

T , µ
N(T ))

]

Minimization of JN(u) is a cooperative scenario.

Mean-field type optimal control is ε(N)-optimal for the collaborative social cost
minimization, where ε(N)→ 0 as N →∞. Based on results concerning
convergence properties of relaxed controls.

Main references: El Karoui, Huu Nguyen and Jean-Blanc (1988)2 (controlled
standard SDEs), Ölschläger (1984)3 (mean-field SDEs without control), Lacker
(2017)4 (controlled mean-field SDEs).

2Nicole El Karoui, Du Huù Nguyen, and Monique Jeanblanc-Picqué. “Existence of an optimal Markovian filter for the control under
partial observations”. In: SIAM journal on control and optimization 26.5 (1988), pp. 1025–1061.

3Karl Oelschlager et al. “A martingale approach to the law of large numbers for weakly interacting stochastic processes”. In: The
Annals of Probability 12.2 (1984), pp. 458–479.

4Daniel Lacker. “Limit theory for controlled McKean–Vlasov dynamics”. In: SIAM Journal on Control and Optimization 55.3 (2017),
pp. 1641–1672.
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Conclusions

I Mean-field approach to crowd dynamics
I congestion, crowd aversion, etc.
I decision-based modeling with anticipating agents
I correspondence between micro- and macroscopic picture

I Sticky reflected SDEs of mean-field type with boundary diffusion
I as an alternative to reflective boundary conditions in confined domains
I pedestrians no longer “bounce” at the boundary
I pedestrians may interact and take actions while spending time at the

boundary
I preserves a micro-macro correspondence for crowds in confined domains

Thank you!
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Examples: Convex and compact U

Assume that (û, L̂) is an optimal solution for the mean-field type control
problem. Recall the first order adjoint equation,

dpt = −
(
qtβ

û
t + E

[
qtL

û
t∇yβ

û
t

]
rβ(Xt)

− f ût − E
[
Lû
t∇y f

û
t

]
rf (Xt)

)
dt + qtdBt ,

pT = −g û
T − E

[
Lû
T∇yg

û
T

]
rg (XT ).

(4)

Rewriting E [Lû
tYt ] = E û[Yt ] and changing measure to Pû,

dpt = −
(
E û
[
qt∇yβ

û
t

]
rβ(Xt)− f ût − E û

[
∇y f

û
t

]
rf (Xt)

)
dt + qtdB

û
t ,

pT = −g û
T − E û

[
∇yg

û
T

]
rg (XT ).

Whenever U is convex, the optimality condition simplifies to

H(L̂t , v , pt , qt)−H(L̂t , ût , pt , qt) ≤ 0, ∀v ∈ U; P-a.s., a.e.-t ∈ [0,T ].
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Example: Convex and compact U

p part of the solution to a BSDE so it is the conditional expectation

pt = −E û [φ (XT ,T ) | Ft ] + E û

[∫ T

t

(. . . )ds | Ft

]
, (5)

where as before

φ(Xt , t) := g
(
Xt ,E

û[rg (Xt)]
)

+ E û
[
∇yg

(
Xt ,E

û[rg (Xt))]
)]

rg (Xt).

By Dynkin’s formula,

E û[φ(XT ,T ) | Ft ] = φ (Xt , t) +

∫ T

t

E û[(. . . )(s) | Ft ]ds.

Itô-differentiating p from (5) and matching the diffusion coefficients yeilds

qt = −∇xφ (Xt , t)σ(Xt).

The optimality condition (variation of H) relates û to q,

qt∇uβ
û
t = ∇uf

û
t , P-a.s., a.e.-t ∈ [0,T ].
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E û[φ(XT ,T ) | Ft ] = φ (Xt , t) +

∫ T

t
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Itô-differentiating p from (5) and matching the diffusion coefficients yeilds

qt = −∇xφ (Xt , t)σ(Xt).

The optimality condition (variation of H) relates û to q,
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Example: Mean-field LQ (convex and compact U)

Consider on some admissible domain D ⊂ Rd the mean-field LQ problem of
minimizing final variancemin

u∈U

1

2
E

[∫ T

0

Lu
t |ut |2dt + Lu

T |XT − E [Lu
TXT ]|2

]
,

s.t. dLu
t = Lu

t utdBt , Lu
0 = 1,

The optimality condition says that ût = q∗t holds for an optimal control.

With ∇xφ(Xt , t) =
(
Xt − E û[Xt ]

)∗
we identify qt and get:

ût = −(Xt − E û[Xt ])
∗σ(Xt), P-a.s. for almost every t ∈ [0,T ].

û takes P to Pû under which the coordinate process solves the non-linear SDE

dXt =
(
a(Xt)− σ(Xt)(Xt − E û[Xt ])

)
dt + σ(Xt)dB

û
t .
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û takes P to Pû under which the coordinate process solves the non-linear SDE

dXt =
(
a(Xt)− σ(Xt)(Xt − E û[Xt ])
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∗σ(Xt), P-a.s. for almost every t ∈ [0,T ].
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Total variation distance on P(Ω)

For µ, ν ∈ P(Rd), the total variation distance is defined by the formula

d(µ, ν) = 2 sup
B∈B(Rd )

|µ(B)− ν(B)|. (6)

Define on F the total variation metric

d(P,Q) := 2 sup
A∈F
|P(A)− Q(A)|. (7)

On the filtration F,

Dt(Q, Q̃) := 2 sup
A∈Ft

|Q(A)− Q̃(A)|, 0 ≤ t ≤ T . (8)

It satisfies
Ds(Q, Q̃) ≤ Dt(Q, Q̃), 0 ≤ s ≤ t. (9)

For Q, Q̃ ∈ P(Ω) with time marginals Qt := Q ◦ x−1
t and Q̃t := Q̃ ◦ x−1

t , then

d(Qt , Q̃t) ≤ Dt(Q, Q̃), 0 ≤ t ≤ T . (10)

Endowed with the total variation metric DT , P(Ω) is a complete metric space.
Moreover, DT carries out the usual topology of weak convergence.
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