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Motivation

In the absence of a vaccine, how can the individuals be optimally incentivized to make

the right effort in the fight against an epidemic?

A policy maker’s problem: give incentives and penalties to the population that

1. the people accept and follow

2. yields a behavior that “controls” the epidemic
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Setting

“Optimal incentives to mitigate epidemics: A Stackelberg mean field game approach”

A., Carmona, Dayanıklı, Lauriére, arXiv 2020.

→ Disease spreads depending on the agents’ efforts to slow the spread.

→ The agents are not cooperating!

→ Principal optimizes a contract by taking into account the agents’ response.

The principal and the population play a Stackelberg game1

Principal Agent population

Incentives: (λ, ξ)

Mean field equilibrium: (α̂(λ,ξ), ρ̂(λ,ξ))

Mean field game: inf α J(λ,ξ)(α;ρ)

Optimization: inf(λ,ξ) J
0(λ, ξ; ρ̂(λ,ξ))

1Holmström-Milgrom ’87, Sannikov ’08 ’13, Djehiche-Helgesson ’14, Cvitanić e.a. ’18, Carmona-Wang ’18, Elie e.a. ’19
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Epidemic modelling with the SIR model

S I R
βS(t)I (t) γ

→ Individuals are categorized as ”Susceptible”, ”Infected” or ”Recovered”

→ The system of equations that describes the evolution of the epidemic:



Ṡ(t) = −βS(t)I (t), S(0) ≥ 0

İ (t) = βS(t)I (t)− γI (t), I (0) ≥ 0

Ṙ(t) = γI (t), R(0) ≥ 0

S(0) + I (0) + R(0) = 1,
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SIR Modeling with Continuous Time Markov Chains

Consider N agents. Agent i has state X i
t ∈ {S, I,R} at time t.

→ Pairwise meetings at random with rate β.

→ Susceptible agent meets an infected agent: Susceptible gets infected.

→ The probability of infection is decreased by the action of two agents that

meet in a multiplicative way.

Introduce “contact factor”

Q(pN
t ) =

. . . βpN
t (I ) 0

0 . . . γ

0 0 0


where pN

t (I ) is the proportion of the population that is infected at time t.
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How to characterize the Stackelberg equilibrium?



Mean Field Games

→ Nash equilibrium computation is notoriously hard in games with a large number of

players, N � 1.

→ Approximation in the large-population limit N →∞: Mean Field Games!2

→ Can often be used when:

• Players are almost identical

• Interactions are of mean-field type

2Huang-Malhamé-Caines ’06, Lasry-Lions ’06
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Agent Population

Principal Agent population

Incentives: (λ, ξ) Mean field game: inf α J(λ,ξ)(α;ρ)

→ For very large N, approximate the game with contact factor control with

“extended finite-state MFG”3

→ For a fixed joint control-state distribution flow ρ

• the cost for α ∈ A is

Jλ,ξ(α;ρ) := E
[∫ T

0
f (t,Xt , αt , ρt ;λt)dt − U(ξ)

]
,

where (λ, ξ) is principal’s policy choice.

• The agent’s state Xt jumps according to Q(αt , ρt). In the SIR example:

Q(α, ρ) =

. . . βα
∫
A aρ(da, I ) 0

0 . . . γ

0 0 · · ·

 ,
3Gomes e.a. ’10 ’13, Kolokoltsov ’12, Carmona-Wang ’16 ’18, Cecchin-Fischer ’18, Bayraktar-Cohen ’18, Choutri e.a. ’18 ’19
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Mean Field Nash Equilibrium

Principal Agent population

Incentives: (λ, ξ)

Mean field equilibrium: (α̂(λ,ξ), ρ̂(λ,ξ))

Mean field game: inf α J(λ,ξ)(α;ρ)

Definition: If the pair (α̂, ρ̂) satisfies:

(i) α̂ minimizes the cost of player given ρ̂;

(ii) ∀t ∈ [0,T ], ρ̂t is the joint distribution of control α̂t and state Xt ,

then (α̂, ρ̂) is a mean field Nash equilibrium given the contract (λ, ξ).

→ For given the contract (λ, ξ), mean-field Nash equilibria are characterized with a

forward-backward SDE (FBSDE).
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Principal

Principal Agent population

Incentives: (λ, ξ)

Mean field equilibrium: (α̂(λ,ξ), ρ̂(λ,ξ))

Mean field game: inf α J(λ,ξ)(α;ρ)

Optimization: inf(λ,ξ) J
0(λ, ξ)

→ The principal’s cost for policy (λ, ξ) is

J0(λ, ξ) := E
[∫ T

0

(
c0(t, p̂λ,ξt ) + f0(t, λt)

)
dt + C0(p̂λ,ξT ) + ξ

]
where p̂(λ,ξ) is the state-marginal of ρ̂(λ,ξ).

→ The principal’s optimization problem is

inf
(λ,ξ)∈C

inf
(α,ρ)∈N (λ,ξ)

Jλ,ξ(α;ρ)≤κ

J0(λ, ξ).
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How to solve the principle’s optimization
problem?



Numerical Approach

Rewriting Discretization Parameterization

→ Reposing the FBSDE as optimal control of a forward-in-time control problem4

→ Time-discretization and Monte Carlo-approximation

→ Parametrizing the optimization variables (principle contract + FBSDE) with

neural networks5

4Sannikov ’08, ’13
5Carmona-Lauriére ’19

12



An example...



Example: Evaluation of Numerical Approach

Agent Population: Set U(ξ) = ξ and

f (t, x , α, ρ;λ) =
cλ

2

(
λ(S) − α

)2
1S (x) +

(
1

2

(
λ(I ) − α

)2
+ cI

)
1I (x)

+
1

2

(
λ(R) − α

)2
1R(x),

where cλ, cI ∈ R+ are constants.

Principal: Set C0(p) = 0 and

c0(t, p) = cInf p(I )2, f0(t, λ) =
∑

i∈{S,I ,R}

β̄(i)

2

(
λ(i) − λ̄(i)

)2

for constant λ̄, β̄ ∈ Rm
+ and cInf > 0.
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Solutions: Inactive Principal
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Figure 1: Late lockdown, ODE solution. Evolution of the population state distribution (left), evolution

of the controls (middle), convergence of the solver (right).

0 10 20 30 40 50
Days

0.0

0.2

0.4

0.6

0.8

De
ns

ity S
I
R

0 10 20 30 40 50
Days

0.6

0.7

0.8

0.9

1.0 ̂αS

̂αI

λ̂S)

λ̂I)

0 200 400 600 800 1000
iterations

10−1

100

101

102

Figure 2: Late lockdown, numerical solution. Evolution of the population state distribution (left), evolution

of the controls (middle), convergence of the loss value (right).



Solutions: Active Principal
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Figure 3: SIR Stackelberg. Evolution of the population state distribution in ODE solution (top left),

evolution of the population state distribution in numerical solution (top right), evolution of the controls in

numerical solution (bottom).
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Epidemic disease spread in a heterogeneous population

“Finite State Graphon Games with Applications to Epidemics”

A., Carmona, Dayanıklı, Lauriére, on arXiv very soon!

→ Disease spreads depending on the agents’ efforts to slow the spread

→ The agents are not cooperating

→ Agents are heterogeneous and have individual rates for infection, recovery, etc.

The population plays a graphon game6

6Delarue ’17, Parise-Ozdaglar ’19, Carmona e.a. ’19, Caines e.a. ’18,’19,’20, A.-Carmona-Lauriére ’21
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Epidemic disease spread in a heterogeneous population

→ A continuum of players, labeled by x ∈ [0, 1]

→ Players see a weighted aggregate: player characteristics (like state, control, etc)
weighted by a graphon w .

• w : [0, 1]× [0, 1]→ [0, 1] measurable and symmetric

• the contact factor aggregate
∫
A aρt(da, I ) now becomes (for player x)

Z x
t =

∫
I
w(x , y)

(∫
A
aρyt (da, I)

)
dy

• In the SIR model with contact factor control

Qx (αx
t ,Z

x
t ) =

. . . β(x)αx
t Z

x
t 0

0 . . . γ(x)

0 0 . . .


• Individual costs

→ Leads to a graphon game between the players
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Thank you!
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