Optimal Incentives to Mitigate Epidemics: A Stackelberg Mean Field Game Approach

Alexander Aurell¹

joint work with René Carmona, Gökçe Dayanıklı & Mathieu Laurière

¹ORFE, Princeton University aaurell@princeton.edu

Stochastic Modeling and Financial Impacts of the Coronavirus Pandemic SIAM Conference on Financial Mathematics and Engineering June 1, 2021

1

In the absence of a vaccine, how can the individuals be optimally **incentivized** to make the right **effort** in the fight against an epidemic?

In the absence of a vaccine, how can the individuals be optimally **incentivized** to make the right **effort** in the fight against an epidemic?

A policy maker's problem: give incentives and penalties to the population that

- $1. \ the people accept and follow$
- 2. yields a behavior that "controls" the epidemic

"Optimal incentives to mitigate epidemics: A Stackelberg mean field game approach" A., Carmona, Dayanıklı, Lauriére, arXiv 2020.

- $\rightarrow\,$ Disease spreads depending on the agents' efforts to slow the spread.
- \rightarrow The agents are not cooperating!
- \rightarrow Principal **optimizes** a contract by taking into account the agents' response.

¹Holmström-Milgrom '87, Sannikov '08 '13, Djehiche-Helgesson '14, Cvitanić e.a. '18, Carmona-Wang '18, Elie e.a. '19

$$S \xrightarrow{\beta S(t)I(t)} I \xrightarrow{\gamma} R$$

- $\rightarrow\,$ Individuals are categorized as "Susceptible", "Infected" or "Recovered"
- $\rightarrow\,$ The system of equations that describes the evolution of the epidemic:

$$\begin{cases} \dot{S}(t) = -\beta S(t)I(t), & S(0) \ge 0\\ \dot{I}(t) = \beta S(t)I(t) - \gamma I(t), & I(0) \ge 0\\ \dot{R}(t) = \gamma I(t), & R(0) \ge 0\\ S(0) + I(0) + R(0) = 1, & \end{cases}$$

Consider N agents. Agent *i* has state $X_t^i \in \{S, I, R\}$ at time *t*.

- \rightarrow **Pairwise meetings** at random with rate β .
- $\rightarrow\,$ Susceptible agent meets an infected agent: Susceptible gets infected.

$$Q(p_t^N) = \begin{bmatrix} \dots & \beta p_t^N(I) & 0\\ 0 & \dots & \gamma\\ 0 & 0 & 0 \end{bmatrix}$$

where $p_t^N(I)$ is the **proportion** of the population that is infected at time *t*.

Consider N agents. Agent *i* has state $X_t^i \in \{S, I, R\}$ at time *t*.

- \rightarrow **Pairwise meetings** at random with rate β .
- $\rightarrow\,$ Susceptible agent meets an infected agent: Susceptible gets infected.
- \rightarrow The probability of infection is decreased by the action of two agents that meet in a multiplicative way.

$$Q(\boldsymbol{p}_t^N) = \begin{bmatrix} \dots & \beta \boldsymbol{p}_t^N(I) & \mathbf{0} \\ \mathbf{0} & \dots & \gamma \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

where $p_t^N(I)$ is the **proportion** of the population that is infected at time *t*.

Consider N agents. Agent *i* has state $X_t^i \in \{S, I, R\}$ at time *t*.

- \rightarrow **Pairwise meetings** at random with rate β .
- $\rightarrow\,$ Susceptible agent meets an infected agent: Susceptible gets infected.
- \rightarrow The probability of infection is decreased by the action of two agents that meet in a multiplicative way.

Introduce "contact factor"

$$\begin{bmatrix} \dots & \beta \alpha_t^j \frac{1}{N} \sum_{k=1}^N \alpha_t^k \mathbb{1}_I(X_{t-}^k) & 0 \\ 0 & \dots & \gamma \\ 0 & 0 & 0 \end{bmatrix}$$

How to characterize the Stackelberg equilibrium?

- $\rightarrow\,$ Nash equilibrium computation is notoriously hard in games with a large number of players, $N\gg1.$
- \rightarrow Approximation in the large-population limit $N \rightarrow \infty$: Mean Field Games!²
- \rightarrow Can often be used when:
 - Players are almost identical
 - Interactions are of mean-field type

²Huang-Malhamé-Caines '06, Lasry-Lions '06

Agent Population

 \rightarrow For very large *N*, approximate the game with **contact factor** control with **"extended finite-state MFG"**³

- ightarrow For a fixed joint control-state distribution flow ho
 - the cost for $\pmb{\alpha} \in \mathbb{A}$ is

$$J^{\boldsymbol{\lambda},\boldsymbol{\xi}}(\boldsymbol{\alpha};\boldsymbol{\rho}) := \mathbb{E}\left[\int_0^T f(t,X_t,\alpha_t,\rho_t;\boldsymbol{\lambda}_t)dt - U(\boldsymbol{\xi})\right],$$

where (λ, ξ) is principal's policy choice.

• The agent's state X_t jumps according to $Q(\alpha_t, \rho_t)$. In the SIR example:

$$Q(\alpha,\rho) = \begin{bmatrix} \dots & \beta \alpha \int_A a \rho(da,I) & 0 \\ 0 & \dots & \gamma \\ 0 & 0 & \dots \end{bmatrix},$$

³Gomes e.a. '10 '13, Kolokoltsov '12, Carmona-Wang '16 '18, Cecchin-Fischer '18, Bayraktar-Cohen '18, Choutri e.a. '18 '19

Mean Field Nash Equilibrium

Definition: If the pair $(\hat{\alpha}, \hat{\rho})$ satisfies:

- (i) $\hat{\alpha}$ minimizes the cost of player given $\hat{\rho}$;
- (ii) $\forall t \in [0, T]$, $\hat{\rho}_t$ is the joint distribution of control $\hat{\alpha}_t$ and state X_t ,

then $(\hat{\alpha}, \hat{\rho})$ is a mean field Nash equilibrium given the contract (λ, ξ) .

Mean Field Nash Equilibrium

Definition: If the pair $(\hat{\alpha}, \hat{\rho})$ satisfies:

- (i) $\hat{\alpha}$ minimizes the cost of player given $\hat{\rho}$;
- (ii) $\forall t \in [0, T]$, $\hat{\rho}_t$ is the joint distribution of control $\hat{\alpha}_t$ and state X_t ,

then $(\hat{\alpha}, \hat{\rho})$ is a mean field Nash equilibrium given the contract (λ, ξ) .

 \rightarrow For given the contract (λ , ξ), mean-field Nash equilibria are characterized with a forward-backward SDE (FBSDE).

Principal

ightarrow The principal's cost for policy $(oldsymbol{\lambda},\xi)$ is

$$J^0(oldsymbol{\lambda},\xi) := \mathbb{E}\left[\int_0^T \left(c_0(t,\hat{p}_t^{oldsymbol{\lambda},\xi}) + f_0(t,\lambda_t)
ight) dt + C_0(\hat{p}_T^{oldsymbol{\lambda},\xi}) + \xi
ight]$$

where $\hat{\pmb{\rho}}^{(\pmb{\lambda},\xi)}$ is the state-marginal of $\hat{\pmb{\rho}}^{(\pmb{\lambda},\xi)}$.

Principal

ightarrow The principal's cost for policy $(oldsymbol{\lambda},\xi)$ is

$$J^0(oldsymbol{\lambda},\xi) := \mathbb{E}\left[\int_0^T \left(c_0(t,\hat{p}_t^{oldsymbol{\lambda},\xi}) + f_0(t,\lambda_t)
ight) dt + C_0(\hat{p}_T^{oldsymbol{\lambda},\xi}) + \xi
ight]$$

where $\hat{\pmb{
ho}}^{(\pmb{\lambda},\xi)}$ is the state-marginal of $\hat{\pmb{
ho}}^{(\pmb{\lambda},\xi)}$.

 \rightarrow The principal's optimization problem is

$$\inf_{\substack{(\lambda,\xi)\in\mathcal{C}\ (\alpha,\rho)\in\mathcal{N}(\lambda,\xi)\\ J^{\lambda,\xi}(\alpha;\rho)\leq\kappa}} J^0(\lambda,\xi).$$

How to solve the principle's optimization problem?

- \rightarrow Reposing the FBSDE as optimal control of a forward-in-time control problem⁴
- \rightarrow Time-discretization and Monte Carlo-approximation
- \rightarrow Parametrizing the optimization variables (principle contract + FBSDE) with $neural \ networks^5$

⁴Sannikov '08, '13

⁵Carmona-Lauriére '19

An example...

Agent Population: Set $U(\xi) = \xi$ and

$$\begin{split} f(t, x, \alpha, \rho; \lambda) &= \frac{c_{\lambda}}{2} \left(\lambda^{(S)} - \alpha \right)^2 \mathbb{1}_{S}(x) + \left(\frac{1}{2} \left(\lambda^{(I)} - \alpha \right)^2 + c_I \right) \mathbb{1}_{I}(x) \\ &+ \frac{1}{2} \left(\lambda^{(R)} - \alpha \right)^2 \mathbb{1}_{R}(x), \end{split}$$

where $c_{\lambda}, c_{l} \in \mathbb{R}_{+}$ are constants.

Principal: Set $C_0(p) = 0$ and

$$c_0(t,p) = c_{\mathrm{Inf}} p(l)^2, \quad f_0(t,\lambda) = \sum_{i \in \{S,l,R\}} \frac{ar{eta}^{(i)}}{2} \left(\lambda^{(i)} - ar{\lambda}^{(i)}
ight)^2$$

for constant $\bar{\lambda}, \bar{\beta} \in \mathbb{R}^m_+$ and $c_{\mathrm{Inf}} > 0$.

Solutions: Inactive Principal

Figure 1: Late lockdown, ODE solution. Evolution of the population state distribution (left), evolution of the controls (middle), convergence of the solver (right).

Figure 2: Late lockdown, numerical solution. Evolution of the population state distribution (left), evolution of the controls (middle), convergence of the loss value (right).

Solutions: Active Principal

Figure 3: SIR Stackelberg. Evolution of the population state distribution in ODE solution (top left), evolution of the population state distribution in numerical solution (top right), evolution of the controls in numerical solution (bottom).

"Finite State Graphon Games with Applications to Epidemics" A., Carmona, Dayanıklı, Lauriére, on arXiv very soon!

- $\rightarrow\,$ Disease spreads depending on the agents' efforts to slow the spread
- $\rightarrow\,$ The agents are not cooperating
- $\rightarrow\,$ Agents are heterogeneous and have individual rates for infection, recovery, etc.

The population plays a graphon game⁶

⁶Delarue '17, Parise-Ozdaglar '19, Carmona *e.a.* '19, Caines e.a. '18,'19,'20, A.-Carmona-Lauriére '21

- \rightarrow A continuum of players, labeled by $x \in [0,1]$
- \rightarrow Players see a weighted aggregate: player characteristics (like state, control, etc) weighted by a graphon w.
 - $w: [0,1] \times [0,1]
 ightarrow [0,1]$ measurable and symmetric
 - the contact factor aggregate $\int_A a \rho_t(da, I)$ now becomes (for player x)

$$\mathbf{Z}_{t}^{\mathsf{x}} = \int_{I} w(\mathsf{x}, \mathsf{y}) \left(\int_{\mathcal{A}} \mathsf{a} \rho_{t}^{\mathsf{y}}(\mathsf{d}\mathsf{a}, \mathsf{I}) \right) d\mathsf{y}$$

• In the SIR model with contact factor control

$$Q^{\mathsf{x}}(\alpha_t^{\mathsf{x}}, Z_t^{\mathsf{x}}) = \begin{bmatrix} \dots & \beta(\mathsf{x})\alpha_t^{\mathsf{x}} Z_t^{\mathsf{x}} & 0\\ 0 & \dots & \gamma(\mathsf{x})\\ 0 & 0 & \dots \end{bmatrix}$$

- Individual costs
- \rightarrow Leads to a graphon game between the players

Thank you!