Some aspects of mean-field type modeling of pedestrian crowd dynamics

Alexander Aurell 1

Based on joint work with Boualem Djehiche

 $^{^{1}} Department of Mathematics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden (aaurell@kth.se)$

March to TELE2 Arena, Stockholm

Music for the Royal Fireworks, KTH Courtyard

Pedestrian crowd motion: quick facts

Empirical studies of human crowds have been conducted since the '50s².

Basic guidelines for pedestrian behavior: will to reach specific targets, repulsion from other individuals and deterministic if the crowd is sparse but partially random if the crowd is dense³.

Humans motion is decision-based.

Classical particles

- ▶ Robust interaction only through collisions
- Blindness dynamics ruled by inertia
- Local interaction is pointwise
- Isotropy all directions equally influential

"Smart agents"

- Fragile avoidance of collisions and obstacles
- Vision dynamics ruled at least partially by decision
- Nonlocal interaction at a distance
- Anisotropy some directions more influential than others

²BD Hankin and R Wright. "Passenger flow in subways". In: Journal of the Operational Research Society 9.2 (1958), pp. 81–88.

³E Cristiani, B Piccoli, and A Tosin. "Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints". In: Mathematical modeling of collective behavior in socio-economic and life sciences. Springer, 2010, pp. 337–364.

Pedestrian crowd motion: mathematical modeling approaches

Microscopic

- D Helbing and P Molnar. "Social force model for pedestrian dynamics". In: *Physical review E* 51.5 (1995), p. 4282 A Schadschneider. "Cellular automaton approach to pedestrian dynamics-theory". In: *Pedestrian and Evacuation Dynamics* (2002), pp. 75–85
- S Okazaki. "A study of pedestrian movement in architectural space, part 1: Pedestrian movement by the application on of magnetic models". In: *Trans. AIJ* 283 (1979), pp. 111–119

Macroscopic

- LF Henderson. "The statistics of crowd fluids". In: Nature 229.5284 (1971), p. 381
- R Hughes. "The flow of human crowds". In: Annual review of fluid mechanics 35.1 (2003), pp. 169-182
- S Hoogendoorn and P Bovy. "Pedestrian route-choice and activity scheduling theory and models". In:
- Transportation Research Part B: Methodological 38.2 (2004), pp. 169-190

Mesoscopic/Kinetic

- C Dogbe. "On the modelling of crowd dynamics by generalized kinetic models". In: *Journal of Mathematical Analysis and Applications* 387.2 (2012), pp. 512–532
- G Albi et al. "Mean field control hierarchy". In: Applied Mathematics & Optimization 76.1 (2017), pp. 93-135

Mean-field games:

a macroscopic approximation of a microscopic model

Mean-field type games/control:

a macroscopic approximation of a microscopic model

or

a distribution dependent microscopic model

Pedestrian crowd modeling: heuristics of the mean-field approach

- ▶ The dynamics of a pedestrians is given by
 - ► change in position = velocity + noise

The pedestrian controls it's velocity.

- ▶ The pedestrian controls it's velocity rationally, it minimizes
 - Expected cost $= \mathbb{E}\left[\int_0^T f(\text{energy use}(t), \text{interaction}(t)) dt + \text{deviation from final target}\right]$
- The interaction is assumed to depend on an aggregate of distances to other pedestrians:
 - Lots of pedestrians in my neighborhood congestion cost
 - Seeking the company of others social gain
- To evaluate its interaction cost, the pedestrian anticipates the movement of other pedestrians via the distribution of the crowd.

Many possible extensions:

controlled noise, multiple interacting crowds, fast exit times, interaction with the environment, common noise, hard congestion.

Pedestrian crowd motion: mean-field models

Early works

S Hoogendoorn and P Bovy. "Pedestrian route-choice and activity scheduling theory and models". In: *Transportation Research Part B: Methodological* 38.2 (2004), pp. 169–190 C Dogbé. "Modeling crowd dynamics by the mean-field limit approach". In: *Mathematical and Computer Modelling* 52.9-10 (2010), pp. 1506–1520

Aversion and congestion

A Lachapelle and M-T Wolfram. "On a mean field game approach modeling congestion and aversion in pedestrian crowds". In: *Transportation research part B: methodological* 45.10 (2011), pp. 1572–1589

Y Achdou and M Laurière. "Mean field type control with congestion". In: Applied Mathematics & Optimization 73.3 (2016), pp. 393–418

Fast exits (evacuation)

M Burger et al. "On a mean field game optimal control approach modeling fast exit scenarios in human crowds". In: Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on. IEEE. 2013, pp. 3128–3133

M Burger et al. "Mean field games with nonlinear mobilities in pedestrian dynamics". In: Discrete and Continuous Dynamical Systems-Series B (2014)

B Djehiche, A Tcheukam, and H Tembine. "A Mean-Field Game of Evacuation in Multilevel Building". In: *IEEE Transactions on Automatic Control* 62.10 (2017), pp. 5154–5169

Multi-population

E Feleqi. "The derivation of ergodic mean field game equations for several populations of players". In: *Dynamic Games and Applications* 3.4 (2013), pp. 523–536

M Cirant. "Multi-population mean field games systems with Neumann boundary conditions". In: Journal de Mathématiques Pures et Appliquées 103.5 (2015), pp. 1294–1315

Y Achdou, M Bardi, and M Cirant. "Mean field games models of segregation". In: Mathematical Models and Methods in Applied Sciences 27.01 (2017), pp. 75–113

Pedestrian crowd motion: rationality

Another model categorization: level of rationality².

Rationality level	Information structure	Area of application
Irrational	-	Panic situations
Basic	Destination and environment	Movement in large unfamiliar environments
Rational	Current position of other pedestrians	Movement in small and well-known environment
Highly rational	Forecast of other pedestrians movement	Movement in small and well-known environment
Optimal	Omnipotent central planner	"Soldiers"

Mean field games can model highly rational pedestrians.

Mean-field type control can model optimal pedestrians.

²E Cristiani, F Priuli, and A Tosin. "Modeling rationality to control self-organization of crowds: an environmental approach". In: SIAM Journal on Applied Mathematics 75.2 (2015), pp. 605–629.

Mean-field type game of crowds

Lachapelle & Wolfram (2011) studies a game between two crowds. Non-local interactions can be included (*vision*), and an arbitrary number of crowds can take part in the game (*KTH courtyard*)².

Let there be M crowds. Each crowd has its own target region, modeled by Ψ_j , and preference towards averting the other crowds, $\{\lambda_{jk}\}_{k=1}^M$. The pedestrians in crowd j cooperates, they observes the other crowds and replies jointly. The equilibrium is given by

$$J^{j}(\hat{a}^{1},\ldots,\hat{a}^{M}) \leq J^{j}(\hat{a}^{j},\ldots,\hat{a}^{j-1},\alpha,\hat{a}^{j+1},\ldots,\hat{a}^{M}), \quad j=1,\ldots,M, \ \forall \alpha \in \mathcal{A}, \quad (1)$$

where the crowd cost is $J^{j}(a^{j}; a^{-j}) := \int_{\mathbb{R}^{d}} \int_{0}^{T} \left[\frac{1}{2} |a^{j}(t, x)|^{2} m_{j}(t, x) + \sum_{k=1}^{M} \lambda_{jk} \underbrace{\left(\int_{\mathbb{R}^{d}} \phi_{r}(x - y) m_{k}(t, y) dy \right)}_{=:G^{k}[m](t, x)} m_{j}(t, x) \right] dt dx + \int_{\mathbb{R}^{d}} \Psi_{j}(x) m_{j}(T, x) dx,$ (2)

and the crowd dynamics is

$$\partial_t m_j = \frac{1}{2} \operatorname{Tr}(\nabla^2 \sigma \sigma^T m_j) - \nabla \cdot (b(t, x, a^j) m_j), \quad m_j(0, x) = m_{j,0}(x).$$
 (3)

² A Aurell and B Djehiche. "Mean-field type modeling of nonlocal crowd aversion in pedestrian crowd dynamics". In: SIAM Journal on Control and Optimization 56.1 (2018), pp. 434–455.

Mean-field type game of crowds

Let $\beta = (\beta^1, \dots, \beta^M)$ for $\beta \in \{|a|^2, m, G, \Psi\}$ and consider the optimization problem $\begin{cases} \min_{a \in \mathcal{A}^M} & J(a) = \int_{\mathbb{R}^d} \int_0^T \left[\frac{1}{2}|a(t,x)|^2 \cdot m(t,x) + G[m]^T(t,x)\bar{\Lambda}m(t,x)\right] dtdx \\ & + \int_{\mathbb{R}^d} \Psi(x) \cdot m(T,x)dx, \end{cases}$ (4) s.t. $\partial_t m_j = \frac{1}{2} \mathrm{Tr}[\nabla^2 \sigma \sigma^T m_j] - \nabla \cdot (b(t,x,a^j)m_j),$ $m_j(0,x) = m_{j,0}(x), \quad j = 1,\dots,M,$

where $\bar{\Lambda} + \bar{\Lambda}^T - \mathrm{diag}(\bar{\Lambda}) := \Lambda$ and $\Lambda = (\lambda_{jk})_{j,k=1}^M$ contains the crowd aversion preferences.

Theorem

The control \hat{a} solves (4) if and only if \hat{a} is an equilibrium control for the game between crowds.

Mean-field optimization of a multiple crowd model

Let \hat{a} be admissible and \hat{m} be the corresponding solution to the PDE constraint. Let

$$H(t,x,a,m,p) := \frac{1}{2}|a|^2 \cdot m + G[m]^T \bar{\Lambda} m + \sum_{j=1}^{M} b(t,x,a^{j}(t,x)) m_{j} \cdot \nabla p_{j}(t,x), \quad (5)$$

where p solves

$$\begin{cases} \partial_t \rho = -\left(\frac{1}{2}|\hat{a}|^2 + 2G[\hat{m}]^T\bar{\Lambda} + (\hat{b} \cdot \nabla p_1, \dots, \hat{b} \cdot \nabla p_M) + \frac{1}{2}\text{Tr}(\hat{\sigma}\hat{\sigma}^T \nabla^2 p)\right), \\ \rho(T, x) = \Psi(x). \end{cases}$$
(6)

Theorem

If $(a, m) \mapsto \int_{\mathbb{R}^d} H(t, x, a, m, p) dx$ is convex for all $t \in [0, T]$ and for all admissible control vectors $(\alpha^1, \dots, \alpha^M)$,

$$\int_{\mathbb{R}^d} \int_0^T D_{a^j} H(t, x, \hat{a}, \hat{m}, p) \cdot \alpha^j dt dx = 0, \quad j = 1, \dots, M,$$

then \hat{a} solves the mean-field control problem (4).

The convexity assumption holds if and only if

$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \phi_{\mathbf{r}}(\mathbf{x} - \mathbf{y}) (m(t, \mathbf{y}) - m'(t, \mathbf{y}))^T \bar{\Lambda}(m(t, \mathbf{x}) - m'(t, \mathbf{x})) d\mathbf{y} d\mathbf{x} \ge 0$$
 (7)

for all densities m, m' and $t \in [0, T]$.

Stochastic dynamics with initial condition cannot model motion that has to terminate in a target location at time horizon T, such as:

- Guards moving to a security threat
- Medical personnel moving to a patient
- · Fire-fighters moving to a fire
- Deliveries

Control of mean-field BSDEs can be a tool for *centrally planned decision-making for pedestrian groups*, who are forced to reach a target position.

Recall, mean-field control is suitable for pedestrian crowd modeling when

- the central planner is rational and has the ability to anticipate the behaviour of other pedestrians
- · aggegate effects are considered

The motion of our representative agent is described by a BSDE,

$$\begin{cases} dY_t^u = b(t, Y_t^u, \mathbb{P}_{Y_t^u}, Z_t^u, u_t) dt + Z_t^u dB_t, \\ Y_T^u = y_T. \end{cases}$$
 (8)

The central planner faces the optimization problem

$$\begin{cases}
\min_{(u_t)_{t\in[0,T]}\in\mathcal{U}[0,T]} & \mathbb{E}\left[\int_0^T f(t,Y_t^u,\mathbb{P}_{Y_t^u},u_t)dt + h(Y_0^u,\mathbb{P}_{Y_0^u})\right] \\
\text{s.t.} & (Y_t^u,Z_t^u)_{t\in[0,T]} \text{ solves (8)}.
\end{cases}$$

From a modeling point of view, the tagged pedestrian uses two controls:

- (ut)t∈[0,T] picked by an optimization procedure to reduce energy use, movement in densely crowded areas
- ▶ $(Z_t)_{t \in [0,T]}$ to predict the best path to y_T given $(u_t)_{t \in [0,T]}$, given implicitly by the martingale representation theorem.

A spike pertubation technique leads to a Pontryagin type maximum principle².

²A Aurell and B Djehiche. "Modeling tagged pedestrian motion: a mean-field type control approach". In: arXiv preprint arXiv:1801.08777v2 (2018).

Assumptions: i) $u \mapsto b(\cdot, \cdot, \cdot, \cdot, u)$ is Lipschitz and its $y \cdot z - z - and \mu$ -derivatives are bounded ii) $b(\cdot, 0, \delta_0, 0, u)$ is square-integrable for all $u \in U$ iii) $y_T \in L^2(F_T)$ iv) admissible controls (U[0, T]) take values in the compact set U and are square-integrable.

Theorem - necessary conditions

Suppose that $(\hat{Y},\hat{Z},\hat{v})$ is solves the control problem. Let H be the Hamiltonian

$$H(t, y, \mu, z, u, p) := b(t, y, \mu, z, u)p - f(t, y, \mu, u), \tag{10}$$

and let $(p_t)_{t \in [0,T]}$ solve the adjoint equation

$$\begin{cases}
dp_{t} = -\left\{\partial_{y}H(t, \hat{Y}_{t}, \mathbb{P}_{\hat{Y}_{t}}, \hat{Z}_{t}, \hat{u}_{t}, p_{t}) + \mathbb{E}\left[\partial_{\mu}H(t, \hat{Y}_{t}, (\mathbb{P}_{\hat{Y}_{t}})^{*}, \hat{Z}_{t}, \hat{u}_{t}, p_{t})\right]\right\} dt \\
-p_{t}\partial_{z}b(t, \hat{Y}_{t}, \mathbb{P}_{Y_{t}}, \hat{Z}_{t}, \hat{u}_{t})dB_{t}, \\
p_{0} = \partial_{y}h(\hat{Y}_{0}, \mathbb{P}_{\hat{Y}_{0}}) + \mathbb{E}\left[\partial_{\mu}h(\hat{Y}_{0}, (\mathbb{P}_{\hat{Y}_{t}})^{*})\right].
\end{cases} (11)$$

Then for a.e. t. \mathbb{P} -a.s..

$$\hat{u}_t = \underset{u \in U}{\operatorname{argmax}} \ H(t, \hat{Y}_t, \mathbb{P}_{\hat{Y}_t}, \hat{Z}_t, u, \rho_t). \tag{12}$$

Theorem - sufficient conditions

Suppose that H is concave in (y, μ, z, u) , h is convex in (y, μ) and $(\hat{u}_t)_{t \in [0, T]}$ satisfies (12) \mathbb{P} -a.s. for a.e. t. Then $(\hat{Y}, \hat{Z}, \hat{u})$ solves the control problem.

$$\begin{cases} \min_{(u_t)_{t \in [0,1]} \in \mathcal{U}} & \frac{1}{2} \mathbb{E} \left[\int_0^1 \lambda_1 u_t^2 + \lambda_2 (Y_t - \mathbb{E}[Y_t])^2 dt + \lambda_3 (Y_0 - [0.2, 0.2]^T)^2 \right], \\ \text{s.t.} & dY_t = (u_t + B_t) dt + Z_t dB_t, Y_1 = [2, 2]^T. \end{cases}$$

$$(13)$$

$$\sum_{t=0}^{t=0} \sum_{j=0}^{t=0.4975} \sum_{j=0}^{t=0.4975} \sum_{j=0.6475}^{t=0.6475} \sum_{j=0.7975}^{t=0.7975} \sum_{j=0.5475}^{t=0.8975} \sum_{j=0.9775}^{t=0.8975} \sum_{j=0.9775}^{t=0.9775} \sum_{j=0.9775}^{t$$

Simulations based on the least-square Monte Carlo method².

²C Bender and J Steiner. "Least-squares Monte Carlo for backward SDEs". In: *Numerical methods in finance*. Springer, 2012, pp. 257–289.

Thank you!