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Pedestrian crowd motion: quick facts

Empirical studies of human crowds have been conducted since the ’50s2.

Basic guidelines for pedestrian behavior: will to reach specific targets, repulsion
from other individuals and deterministic if the crowd is sparse but partially
random if the crowd is dense3.

Humans motion is decision-based.

Classical particles

I Robust - interaction only through collisions

I Blindness - dynamics ruled by inertia

I Local - interaction is pointwise

I Isotropy - all directions equally influential

”Smart agents”

I Fragile - avoidance of collisions and obstacles

I Vision - dynamics ruled at least partially by
decision

I Nonlocal - interaction at a distance

I Anisotropy - some directions more influential
than others

2BD Hankin and R Wright. “Passenger flow in subways”. In: Journal of the Operational Research Society 9.2 (1958), pp. 81–88.
3E Cristiani, B Piccoli, and A Tosin. “Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic

viewpoints”. In: Mathematical modeling of collective behavior in socio-economic and life sciences. Springer, 2010, pp. 337–364.
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Pedestrian crowd motion: mathematical modeling approaches

Microscopic
D Helbing and P Molnar. “Social force model for pedestrian dynamics”. In: Physical review E 51.5 (1995), p. 4282
A Schadschneider. “Cellular automaton approach to pedestrian dynamics-theory”. In: Pedestrian and Evacuation
Dynamics (2002), pp. 75–85
S Okazaki. “A study of pedestrian movement in architectural space, part 1: Pedestrian movement by the
application on of magnetic models”. In: Trans. AIJ 283 (1979), pp. 111–119

Macroscopic
LF Henderson. “The statistics of crowd fluids”. In: Nature 229.5284 (1971), p. 381
R Hughes. “The flow of human crowds”. In: Annual review of fluid mechanics 35.1 (2003), pp. 169–182
S Hoogendoorn and P Bovy. “Pedestrian route-choice and activity scheduling theory and models”. In:
Transportation Research Part B: Methodological 38.2 (2004), pp. 169–190

Mesoscopic/Kinetic
C Dogbe. “On the modelling of crowd dynamics by generalized kinetic models”. In: Journal of Mathematical
Analysis and Applications 387.2 (2012), pp. 512–532
G Albi et al. “Mean field control hierarchy”. In: Applied Mathematics & Optimization 76.1 (2017), pp. 93–135

Mean-field games:
a macroscopic approximation

of a microscopic model

Mean-field type games/control:
a macroscopic approximation

of a microscopic model
or

a distribution dependent
microscopic model
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Pedestrian crowd modeling: heuristics of the mean-field approach

I The dynamics of a pedestrians is given by

I change in position = velocity + noise

The pedestrian controls it’s velocity.

I The pedestrian controls it’s velocity rationally, it minimizes

I Expected cost

= E
[∫ T

0 f (energy use(t), interaction(t)) dt + deviation from final target
]

I The interaction is assumed to depend on an aggregate of distances to other
pedestrians:

I Lots of pedestrians in my neighborhood - congestion cost
I Seeking the company of others - social gain

I To evaluate its interaction cost, the pedestrian anticipates the movement of
other pedestrians via the distribution of the crowd.

Many possible extensions:
controlled noise, multiple interacting crowds, fast exit times, interaction with the
environment, common noise, hard congestion.
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Pedestrian crowd motion: mean-field models

Early works

S Hoogendoorn and P Bovy. “Pedestrian route-choice and activity scheduling theory and models”.
In: Transportation Research Part B: Methodological 38.2 (2004), pp. 169–190
C Dogbé. “Modeling crowd dynamics by the mean-field limit approach”. In: Mathematical and
Computer Modelling 52.9-10 (2010), pp. 1506–1520

Aversion and congestion

A Lachapelle and M-T Wolfram. “On a mean field game approach modeling congestion and
aversion in pedestrian crowds”. In: Transportation research part B: methodological 45.10 (2011),
pp. 1572–1589
Y Achdou and M Laurière. “Mean field type control with congestion”. In: Applied Mathematics &
Optimization 73.3 (2016), pp. 393–418

Fast exits (evacuation)

M Burger et al. “On a mean field game optimal control approach modeling fast exit scenarios in
human crowds”. In: Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on. IEEE.
2013, pp. 3128–3133
M Burger et al. “Mean field games with nonlinear mobilities in pedestrian dynamics”. In: Discrete
and Continuous Dynamical Systems-Series B (2014)
B Djehiche, A Tcheukam, and H Tembine. “A Mean-Field Game of Evacuation in Multilevel
Building”. In: IEEE Transactions on Automatic Control 62.10 (2017), pp. 5154–5169

Multi-population

E Feleqi. “The derivation of ergodic mean field game equations for several populations of players”.
In: Dynamic Games and Applications 3.4 (2013), pp. 523–536
M Cirant. “Multi-population mean field games systems with Neumann boundary conditions”. In:
Journal de Mathématiques Pures et Appliquées 103.5 (2015), pp. 1294–1315
Y Achdou, M Bardi, and M Cirant. “Mean field games models of segregation”. In: Mathematical
Models and Methods in Applied Sciences 27.01 (2017), pp. 75–113
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Pedestrian crowd motion: rationality

Another model categorization: level of rationality2.

Rationality level Information structure Area of application

Irrational - Panic situations

Basic Destination and environment Movement in large unfamiliar environments

Rational Current position of other pedestrians Movement in small and well-known environment

Highly rational Forecast of other pedestrians movement Movement in small and well-known environment

Optimal Omnipotent central planner ”Soldiers”

Mean field games can model highly rational pedestrians.

Mean-field type control can model optimal pedestrians.

2E Cristiani, F Priuli, and A Tosin. “Modeling rationality to control self-organization of crowds: an environmental approach”. In:
SIAM Journal on Applied Mathematics 75.2 (2015), pp. 605–629.
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Mean-field type game of crowds

Lachapelle & Wolfram (2011) studies a game between two crowds. Non-local
interactions can be included (vision), and an arbitrary number of crowds can take part
in the game (KTH courtyard)2.

Let there be M crowds. Each crowd has its own target region, modeled by Ψj , and

preference towards averting the other crowds, {λjk}Mk=1. The pedestrians in crowd j
cooperates, they observes the other crowds and replies jointly. The equilibrium is given
by

J j (â1, . . . , âM) ≤ J j (âj , . . . , âj−1, α, âj+1, . . . , âM), j = 1, . . . ,M, ∀α ∈ A, (1)

where the crowd cost is

J j (aj ; a−j ) :=

∫
Rd

∫ T

0

[
1

2
|aj (t, x)|2mj (t, x)

+
M∑
k=1

λjk

(∫
Rd
φr (x − y)mk (t, y)dy

)
︸ ︷︷ ︸

=:Gk [m](t,x)

mj (t, x)

]
dtdx +

∫
Rd

Ψj (x)mj (T , x)dx ,
(2)

and the crowd dynamics is

∂tmj =
1

2
Tr(∇2σσTmj )−∇ · (b(t, x , aj )mj ), mj (0, x) = mj,0(x). (3)

2A Aurell and B Djehiche. “Mean-field type modeling of nonlocal crowd aversion in pedestrian crowd dynamics”. In: SIAM Journal on
Control and Optimization 56.1 (2018), pp. 434–455.
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Mean-field type game of crowds

Let β = (β1, . . . , βM) for β ∈ {|a|2,m,G ,Ψ} and consider the optimization problem

min
a∈AM

J(a) =

∫
Rd

∫ T

0

[
1

2
|a(t, x)|2 ·m(t, x) + G [m]T (t, x)Λ̄m(t, x)

]
dtdx

+

∫
Rd

Ψ(x) ·m(T , x)dx ,

s.t. ∂tmj =
1

2
Tr[∇2σσTmj ]−∇ · (b(t, x , aj )mj ),

mj (0, x) = mj,0(x), j = 1, . . . ,M,

(4)

where Λ̄ + Λ̄T − diag(Λ̄) : = Λ and Λ = (λjk )Mj,k=1 contains the crowd aversion

preferences.

Theorem

The control â solves (4) if and only if â is an equilibrium control for the game
between crowds.
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Mean-field optimization of a multiple crowd model

Let â be admissible and m̂ be the corresponding solution to the PDE constraint. Let

H(t, x , a,m, p) :=
1

2
|a|2 ·m + G [m]T Λ̄m +

M∑
j=1

b(t, x , aj (t, x))mj · ∇pj (t, x), (5)

where p solves∂tp = −
(

1

2
|â|2 + 2G [m̂]T Λ̄ +

(
b̂ · ∇p1, . . . , b̂ · ∇pM

)
+

1

2
Tr(σ̂σ̂T∇2p)

)
,

p(T , x) = Ψ(x).

(6)

Theorem

If (a,m) 7→
∫
Rd H(t, x , a,m, p)dx is convex for all t ∈ [0,T ] and for all admis-

sible control vectors (α1, . . . , αM),∫
Rd

∫ T

0
DajH(t, x , â, m̂, p) · αjdtdx = 0, j = 1, . . . ,M,

then â solves the mean-field control problem (4).

The convexity assumption holds if and only if∫
Rd

∫
Rd
φr (x − y)(m(t, y)−m′(t, y))T Λ̄(m(t, x)−m′(t, x))dydx ≥ 0 (7)

for all densities m,m′ and t ∈ [0,T ].
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Tagged pedestrian motion: control of mean-field BSDEs

Stochastic dynamics with initial condition cannot model motion that has to terminate
in a target location at time horizon T , such as:

• Guards moving to a security threat

• Medical personnel moving to a patient

• Fire-fighters moving to a fire

• Deliveries

Control of mean-field BSDEs can be a tool for centrally planned decision-making for
pedestrian groups, who are forced to reach a target position.

Recall, mean-field control is suitable for pedestrian crowd modeling when

• the central planner is rational and has the ability to anticipate the behaviour of
other pedestrians

• aggegate effects are considered
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Tagged pedestrian motion: control of mean-field BSDEs

The motion of our representative agent is described by a BSDE,{
dY u

t = b(t,Y u
t ,PY u

t
,Zu

t , ut)dt + Zu
t dBt ,

Y u
T = yT .

(8)

The central planner faces the optimization problem
min

(ut )t∈[0,T ]∈U [0,T ]
E
[∫ T

0
f (t,Y u

t ,PY u
t
, ut)dt + h(Y u

0 ,PY u
0

)

]
s.t. (Y u

t ,Z
u
t )t∈[0,T ] solves (8).

(9)

From a modeling point of view, the tagged pedestrian uses two controls:

I (ut)t∈[0,T ] - picked by an optimization procedure to reduce energy use,
movement in densely crowded areas

I (Zt)t∈[0,T ] - to predict the best path to yT given (ut)t∈[0,T ], given implicitly by
the martingale representation theorem.

A spike pertubation technique leads to a Pontryagin type maximum principle2.

2A Aurell and B Djehiche. “Modeling tagged pedestrian motion: a mean-field type control approach”. In: arXiv preprint
arXiv:1801.08777v2 (2018).
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Tagged pedestrian motion: control of mean-field BSDEs

Assumptions: i) u 7→ b(·, ·, ·, ·, u) is Lipschitz and its y -,z- and µ-derivatives are bounded ii) b(·, 0, δ0, 0, u) is square-integrable for

all u ∈ U iii) yT ∈ L2(FT ) iv) admissible controls (U [0, T ]) take values in the compact set U and are square-integrable.

Theorem - necessary conditions

Suppose that (Ŷ , Ẑ , v̂) is solves the control problem. Let H be the Hamiltonian

H(t, y , µ, z, u, p) := b(t, y , µ, z, u)p − f (t, y , µ, u), (10)

and let (pt)t∈[0,T ] solve the adjoint equation
dpt = −

{
∂yH(t, Ŷt ,PŶt

, Ẑt , ût , pt) + E
[
∂µH(t, Ŷt , (PŶt

)∗, Ẑt , ût , pt)
]}

dt

− pt∂zb(t, Ŷt ,PYt , Ẑt , ût)dBt ,

p0 = ∂yh(Ŷ0,PŶ0
) + E

[
∂µh(Ŷ0, (PŶt

)∗)
]
.

(11)
Then for a.e. t, P-a.s.,

ût = argmax
u∈U

H(t, Ŷt ,PŶt
, Ẑt , u, pt). (12)

Theorem - sufficient conditions

Suppose that H is concave in (y , µ, z, u), h is convex in (y , µ) and (ût)t∈[0,T ]

satisfies (12) P-a.s. for a.e. t. Then (Ŷ , Ẑ , û) solves the control problem.
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Tagged pedestrian motion: control of mean-field BSDEs


min

(ut )t∈[0,1]∈U

1

2
E
[∫ 1

0
λ1u

2
t + λ2(Yt − E[Yt ])

2dt + λ3(Y0 − [0.2, 0.2]T )2

]
,

s.t. dYt = (ut + Bt)dt + ZtdBt , Y1 = [2, 2]T .

(13)

Upper row: (λ1, λ2, λ3) = (50, 50, 10).
Lower row: (λ1, λ2, λ3) = (50, 0, 10).

Simulations based on the least-square Monte Carlo method2.

2C Bender and J Steiner. “Least-squares Monte Carlo for backward SDEs”. In: Numerical methods in finance. Springer, 2012,
pp. 257–289.
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Thank you!
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