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Pedestrian crowd motion: quick facts

Empirical studies of human crowds have been conducted since the '50s2.

Basic guidelines for pedestrian behavior: will to reach specific targets, repulsion
from other individuals and deterministic if the crowd is sparse but partially
random if the crowd is dense®.

Humans motion is decision-based.

Classical particles "Smart agents”
P Robust - interaction only through collisions P Fragile - avoidance of collisions and obstacles

Blindness - dynamics ruled by inertia P Vision - dynamics ruled at least partially by

>
P Local - interaction is pointwise decision
| 4

o ) ) > B . .
Isotropy - all directions equally influential Nonlocal - interaction at a distance

P Anisotropy - some directions more influential
than others

2BD Hankin and R Wright. “Passenger flow in subways". In: Journal of the Operational Research Society 9.2 (1958), pp. 81-88.
3E Cristiani, B Piccoli, and A Tosin. “Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic
viewpoints”. In: Mathematical modeling of collective behavior in socio-economic and life sciences. Springer, 2010, pp. 337-364.
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Pedestrian crowd motion: mathematical modeling approaches

Microscopic

D Helbing and P Molnar. “Social force model for pedestrian dynamics”. In: Physical review E 51.5 (1995), p. 4282
A Schadschneider. “Cellular automaton approach to pedestrian dynamics-theory”. In: Pedestrian and Evacuation
Dynamics (2002), pp. 75-85

S Okazaki. “A study of pedestrian movement in architectural space, part 1: Pedestrian movement by the
application on of magnetic models”. In: Trans. AlJ 283 (1979), pp. 111-119

Macroscopic

LF Henderson. “The statistics of crowd fluids”. In: Nature 229.5284 (1971), p. 381

R Hughes. “The flow of human crowds”. In: Annual review of fluid mechanics 35.1 (2003), pp. 169-182
S Hoogendoorn and P Bovy. “Pedestrian route-choice and activity scheduling theory and models”. In:
Transportation Research Part B: Methodological 38.2 (2004), pp. 169-190

Mesoscopic/Kinetic

C Dogbe. “On the modelling of crowd dynamics by generalized kinetic models”. In: Journal of Mathematical
Analysis and Applications 387.2 (2012), pp. 512-532

G Albi et al. “Mean field control hierarchy”. In: Applied Mathematics & Optimization 76.1 (2017), pp. 93-135

Mean-field games: Mean-field type games/control:
a macroscopic approximation a macroscopic approximation
of a microscopic model of a microscopic model
or

a distribution dependent
microscopic model
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Pedestrian crowd modeling: heuristics of the mean-field approach

» The dynamics of a pedestrians is given by
> change in position = velocity + noise

The pedestrian controls it's velocity.

> The pedestrian controls it's velocity rationally, it minimizes
> Expected cost
=E [fOT f (energy use(t), interaction(t)) dt + deviation from final target]

> The interaction is assumed to depend on an aggregate of distances to other
pedestrians:

» Lots of pedestrians in my neighborhood - congestion cost
> Seeking the company of others - social gain

> To evaluate its interaction cost, the pedestrian anticipates the movement of
other pedestrians via the distribution of the crowd.

Many possible extensions:
controlled noise, multiple interacting crowds, fast exit times, interaction with the
environment, common noise, hard congestion.
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Pedestrian crowd motion: mean-field models

Early works

S Hoogendoorn and P Bovy. “Pedestrian route-choice and activity scheduling theory and models”.
In: Transportation Research Part B: Methodological 38.2 (2004), pp. 169-190

C Dogbé. “Modeling crowd dynamics by the mean-field limit approach”. In: Mathematical and
Computer Modelling 52.9-10 (2010), pp. 1506-1520

Aversion and congestion

A Lachapelle and M-T Wolfram. “On a mean field game approach modeling congestion and
aversion in pedestrian crowds”. In: Transportation research part B: methodological 45.10 (2011),
pp. 1572-1589

Y Achdou and M Lauriere. “Mean field type control with congestion”. In: Applied Mathematics &
Optimization 73.3 (2016), pp. 393-418

Fast exits (evacuation)

M Burger et al. “On a mean field game optimal control approach modeling fast exit scenarios in
human crowds”. In: Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on. |EEE.
2013, pp. 3128-3133

M Burger et al. “Mean field games with nonlinear mobilities in pedestrian dynamics”. In: Discrete
and Continuous Dynamical Systems-Series B (2014)

B Djehiche, A Tcheukam, and H Tembine. “A Mean-Field Game of Evacuation in Multilevel
Building”. In: IEEE Transactions on Automatic Control 62.10 (2017), pp. 5154-5169

Multi-population

E Feleqi. “The derivation of ergodic mean field game equations for several populations of players”.
In: Dynamic Games and Applications 3.4 (2013), pp. 523-536

M Cirant. “Multi-population mean field games systems with Neumann boundary conditions”. In:
Journal de Mathématiques Pures et Appliquées 103.5 (2015), pp. 1294-1315

Y Achdou, M Bardi, and M Cirant. “Mean field games models of segregation”. In: Mathematical

Models and Methods in Applied Sciences 27.01 (2017), pp. 75-113
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Pedestrian crowd motion: rationality

Another model categorization: level of rationality?.

Rationality level Information structure Area of application

Irrational - Panic situations

Basic Destination and environment Movement in large unfamiliar environments
Rational Current position of other pedestrians Movement in small and well-known environment
Highly rational Forecast of other pedestrians movement Movement in small and well-known environment
Optimal Omnipotent central planner " Soldiers”

Mean field games can model highly rational pedestrians.

Mean-field type control can model optimal pedestrians.

2E Cristiani, F Priuli, and A Tosin. “Modeling rationality to control self-organization of crowds: an environmental approach”.
SIAM Journal on Applied Mathematics 75.2 (2015), pp. 605-629.

5
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Mean-field type game of crowds

Lachapelle & Wolfram (2011) studies a game between two crowds. Non-local
interactions can be included (vision), and an arbitrary number of crowds can take part
in the game (KTH courtyard)?.

Let there be M crowds. Each crowd has its own target region, modeled by W;, and
preference towards averting the other crowds, {’\jk}/y,r The pedestrians in crowd j
cooperates, they observes the other crowds and replies jointly. The equilibrium is given
by

F@E . M < @, 8 e, 887, j=1,...,M, Vae A, (1)
where the crowd cost is

. . . T .
S aT) = /Rd/o |:;|a’(t,x)|2mj(t,x)

+ ZAJk (/ br(x — )mk(f:)’)d)’) m;(t, X):| dtdx+/ W (x)m;(T, x)dx, @

=G [ml(t,x)

and the crowd dynamics is

Ormj = %TY(VZO'O‘ij) — V- (b(t,x, a")mj)7 m;(0,x) = mj o(x). 3)

27 Aurell and B Djehiche. “Mean-field type modeling of nonlocal crowd aversion in pedestrian crowd dynamics”. In: SIAM Journal on
Control and Optimization 56.1 (2018), pp. 434-455.
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Mean-field type game of crowds

Let 3= (BL,...,BM) for B € {|a|>, m, G, ¥} and consider the optimization problem

min, J(a):/IRd/OT E|a(t,x)\2-m(r,x)+G[m]T(t,x)/‘\m(t,x)] dtdx

+ /]Rd V(x) - m(T,x)dx, (4)

1 .
st Ormj = ETr[Vzaaij] — V- (b(t,x,a)m;j),
mj(o,X):mjyo(X), .j:]-:-“’M:

where A + AT —diag(A): = A and A = (/\jk)J’.“”kzl contains the crowd aversion
preferences.

The control 4 solves (4) if and only if 4 is an equilibrium control for the game
between crowds.
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Mean-field optimization of a multiple crowd model

Let 4 be admissible and M be the corresponding solution to the PDE constraint. Let

M
la]> - m + G[m]"Am + > b(t, x,d(t,x))m; - Vpj(t,x), (5)
j=1

1
H(t7X7 a,m, P) =3
2
where p solves

aep = —( L1812 + 2617 A + (B R E‘VpM) + i sV ),
2 2 (6)

P(T,x) = W(x).

If (a, m) — fRd H(t, x, a, m, p)dx is convex for all t € [0, T] and for all admis-
sible control vectors (al,...,aM),

T _
//Da,-H(t,x,é,m,p)~oc/dtdx:0, j=1,...,M,
R4 Jo

then 4 solves the mean-field control problem (4).

The convexity assumption holds if and only if
[, ot )mtey) = () At x) = (2. 0)dyebe 20 (1)
Rd JRI

for all densities m, m’" and t € [0, T].
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Tagged pedestrian motion: control of mean-field BSDEs

Stochastic dynamics with initial condition cannot model motion that has to terminate
in a target location at time horizon T, such as:

Guards moving to a security threat

Medical personnel moving to a patient

Fire-fighters moving to a fire

Deliveries

Control of mean-field BSDEs can be a tool for centrally planned decision-making for
pedestrian groups, who are forced to reach a target position.

Recall, mean-field control is suitable for pedestrian crowd modeling when

e the central planner is rational and has the ability to anticipate the behaviour of
other pedestrians

e aggegate effects are considered
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Tagged pedestrian motion: control of mean-field BSDEs

The motion of our representative agent is described by a BSDE,
dyy = b(t, Yt”,IP’Y[u7 Z{ ur)dt + Z/' dBk, ()
Y—? =YyYT-

The central planner faces the optimization problem

-
min E / f(t, Yu,Pyu7ut)dt+h(Yu,Pyu)
(ut)eepo, 71 EUIO, T] [ 0 ! ¢ 0 0 9)
s.t. (Y¢'s Z)eeo, 1) solves (8).
From a modeling point of view, the tagged pedestrian uses two controls:

> (uf)tE[O,T] - picked by an optimization procedure to reduce energy use,
movement in densely crowded areas

> (Zt)icqo. ) - to predict the best path to yr given (ut).co, 7], given implicitly by
the martingale representation theorem.

A spike pertubation technique leads to a Pontryagin type maximum principle.

27 Aurell and B Djehiche. “Modeling tagged pedestrian motion: a mean-field type control approach”. In: arXiv preprint
arXiv:1801.08777v2 (2018).
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Tagged pedestrian motion: control of mean-field BSDEs

Assumptions: i) u ~— b(-, -, -, -, u) is Lipschitz and its y-,z- and p-derivatives are bounded ii) b(-, 0, 8¢, 0, u) is square-integrable for

all u € Uiii) yp € L2(F7) iv) admissible controls (L{[0, T]) take values in the compact set U and are square-integrable.

Theorem - necessary conditions

Suppose that (\A’, 2, ) is solves the control problem. Let H be the Hamiltonian
H(t,y,p,z,u,p) := b(t,y, p, 2, u)p — f(t,y, p, u), (10)
and let (pt)tcjo, 7] Solve the adjoint equation
dps = — {ayH(t, Ve,Py, e, 0, pr) + E [BMH(t, Ve, (Py,)", 22, O, pt)] } dt
— ptd:b(t, Yt,Py,, Zt, it)dBk,
po = dyh(Yo, Py,) + E [0uh(Yo, (Py,)")]

Then for a.e. t, P-a.s.,

Or = argmax H(t, \A/t,]P’Y,t, Zt, u, pt)- (12)
uel

7
\.

Theorem - sufficient conditions

Suppose that H is concave in (y, u, z, u), h is convex in (y, p) and (8t)teo, 1]
satisfies (12) P-a.s. for a.e. t. Then (Y, Z, ) solves the control problem.
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Tagged pedestrian motion: control of mean-field BSDEs

1 1
min —E U Are? 4 Xa(Ye — E[Y:])2dt + A3(Yo — [0.2,0.2]T)?
(ut)reqo, 11 €U 0 (13)
s.t. dY: = (u + Br)dt + Z:dB:, Y1 =[2,2]7
t =0.4975 t =0.6475 t =0.7975 t =0.8975 t =0.9775
2|
1.8/
S
0.5 ..
C,0
t =0.. 4975 t =0.! 6675 t=0. 7975 t =0.; 8975 t =0.! 9775
2
" v n n ‘ I l

Upper row: (A1, Az, >\3) = (50, 507 10).
Lower row: (A1, A2, A3) = (50,0, 10).
Simulations based on the least-square Monte Carlo method?.

2C Bender and J Steiner. "Least-squares Monte Carlo for backward SDEs”. In: Numerical methods in finance. Springer, 2012,
pp. 257-289.
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Thank you!
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